Performance Evaluation of Exponential Smoothing Method on Hierarchical Time Series Data
DOI:
https://doi.org/10.33022/ijcs.v14i2.4783Keywords:
Exponential Smoothing, Hierarchical Data, SMAPE, Bottom-Up, Tourist ForecastingAbstract
Penelitian ini bertujuan untuk menyalakan metode Simple Exponential Smoothing (SES), Double Exponential Smoothing (Metode Holt), dan Triple Exponential Smoothing (Holt-Winters) dalam memperkirakan jumlah wisatawan di Australia dari tahun 1998 sampai dengan tahun 2016. Data yang digunakan memiliki struktur hierarki dengan empat tingkat: Australia, negara bagian, kawasan, dan tujuan kunjungan. Pendekatan bottom-up diterapkan untuk menghasilkan ramalan pada tingkat hierarki teratas dengan menggabungkan ramalan dari tingkat terendah. Evaluasi dilakukan dengan menggunakan metrik Symmetric Mean Absolute Percentage Error (SMAPE) pada setiap tingkat hierarki dan cakrawala peramalan. Hasil penelitian menunjukkan bahwa Metode Holt berkinerja terbaik pada tingkat Australia (SMAPE 3,26%–9,28%) dan tingkat negara bagian (6,96%–12,29%). Sementara itu, Holt-Winters mencapai kinerja terbaik pada tingkat wilayah (16,57%–21,43%) dan tingkat tujuan kunjungan (43,98%–47,63%). Penelitian ini menyoroti efektivitas Exponential Smoothing dalam menangkap pola dan tren musiman dalam hierarki data dan pentingnya pendekatan bottom-up dalam menghasilkan prakiraan yang konsisten di semua tingkat hierarkis.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Syarifah Syila Alkadrie, Madona Yunita Wijaya, Nina Fitriyati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.