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Water	Distribution	Networks	(WDNs)	suffer	substantial	water	losses	due	to	
pipeline	 leaks,	 resulting	 in	economic	 ramifications	and	exacerbating	global	
water	scarcity	concerns.	This	paper	seeks	 to	 improve	 the	precision	of	 leak	
detection	 and	 the	 identification	 of	 leak	 locations	 within	 WDNs.	 The	
pervasive	issue	of	leaks	in	WDNs	poses	significant	challenges	with	economic	
and	 environmental	 implications	 for	 water	 utilities.	 Traditional	 leak	
detection	methods	are	time-consuming,	resource-intensive,	and	susceptible	
to	 inaccuracies	 and	 false	 alarms	 due	 to	 the	 random	placement	 of	 sensors.	
The	detection	of	concealed	background	leaks,	invisible	to	the	naked	eye	and	
situated	beneath	the	surface,	presents	a	particular	challenge.	This	situation	
complicates	efforts	for	their	real-time	identification	and	subsequent	repairs.	
To	 address	 these	 challenges,	 this	 paper	 introduces	 the	 SVM-CNN-GT	
algorithm,	 an	 advanced	 ensemble	 supervised	 Machine	 Learning	 (ML)	
approach	 that	 incorporates	Support	Vector	Machines	 (SVM),	Convolutional	
Neural	Network	(CNN),	and	Graph	Theory	(GT).	By	combining	multiple	ML	
algorithms,	 the	SVM-CNN-GT	model	 takes	 into	account	various	 factors	 that	
influence	 leak	 detection	 and	 localization,	 resulting	 in	 more	 precise	 and	
reliable	assessments	of	leak	presence	and	location.	The	algorithm	leverages	
automatic	 feature	 extraction	 and	 heterogeneous	 dual	 classifiers	 to	
accurately	 assess	 leaks	 based	 on	 data	 related	 to	 flow	 rate,	 pressure,	 and	
temperature.	
Furthermore,	 a	 combination	 probability	 scheme	 enhances	 leak	 detection	
efficiency	 by	 integrating	 diverse	 classifier	 models	 with	 distinct	 prediction	
outputs.	 Through	 the	 EPANET	 performance	 evaluations,	 the	 SVM-CNN-GT	
algorithm	outperforms	CNN	and	SVM	algorithms,	demonstrating	remarkable	
proficiency	 with	 the	 highest	 average	 leak	 detection	 accuracy	 of	 98%,	
followed	by	CNN	at	82%	and	SVM	at	78%.	
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A. Introduction	
Water	Distribution	Networks	 (WDNs)	play	a	 crucial	 role	 in	providing	 clean	

and	safe	water	to	communities	around	the	world	[1,	2].	However,	these	networks	
face	significant	challenges,	with	 leakage	being	one	of	the	most	pressing	issues	[3,	
4].	 Leakage	 refers	 to	 the	 loss	 of	water	 from	 the	 distribution	 system	due	 to	 pipe	
failures,	 cracks,	 or	 other	 infrastructure	 problems	 [5,	 6].	 This	 problem	 not	 only	
leads	 to	a	waste	of	precious	resources	but	also	poses	 financial	burdens	on	water	
utilities	[7].	The	extent	of	water	loss	due	to	leakage	is	staggering.	As	per	the	World	
Bank's	data,	developing	countries	experience	a	daily	water	 loss	of	approximately	
45	million	 cubic	meters,	 which	 translates	 to	 an	 annual	 economic	 loss	 exceeding	
US$3	 billion	 [8,	 9].	 For	 instance,	 according	 to	 a	 study	 conducted	 by	 the	 Water	
Research	Commission	 (WRC)	of	 South	Africa,	 it	 is	 estimated	 that	 around	35%	of	
the	 country's	 treated	 water	 is	 lost	 due	 to	 leakage	 [10,	 11].	 Non-Revenue	Water	
(NRW),	also	known	as	water	loss	or	unaccounted	for	water,	refers	to	the	volume	of	
water	that	is	pumped	into	WDNs	but	is	not	billed	or	consumed	by	customers	[12,	
13].	 In	South	Africa,	NRW	translates	 to	an	annual	 financial	 loss	of	approximately	
R9.9	 billion	 [14,	 15].	 This	 loss	 occurs	 due	 to	 various	 factors	 such	 as	 leaks,	 theft,	
meter	inaccuracies,	and	unauthorized	consumption	[16].		

Falkenmark's	 indicator	water	 availability	 threshold	 states	 that	 a	 country	 is	
considered	to	be	under	water	scarcity	if	its	per	capita	water	consumption	is	below	
1000	m3	[17,	18].	Additionally,	a	per	capita	water	consumption	of	less	than	1700	
m3	 is	 classified	 as	 a	 water	 stress	 situation	 [19].	 In	 2025	 African	 countries	 will	
either	 be	 in	 a	 state	 of	 water	 scarcity,	 stress	 or	 vulnerable	 to	 changes	 in	 water	
supply	as	the	projections	indicate	(see	Figure.	1)	[20,	21].	The	higher	the	value	of	
the	indicator,	the	greater	the	water	stress	and	the	need	for	conservation	efforts.	

	

	
	

Figure	1.	The	world	water	scarcity	by	2025	[21]	
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Figure.	 1.	 Within	 WDNs,	 there	 exist	 three	 distinct	 categories	 of	 leakage:	
reported,	unreported,	and	background	leakages	as	illustrated	in	Figure	2.	Reported	
and	 unreported	 leakages	 stem	 from	 structural	 pipe	 failures	 or	 bursts,	
characterized	 by	 sudden	 drops	 in	 network	 water	 pressure,	 which	 render	 them	
detectable	 and	 are	 frequently	 reported	 by	 either	 the	 public	 or	 water	 utility	
personnel	[22-24].		

	

	
Figure	2.	WDNs	leakage	type	(a)	burst	leakage	(b)	background	leakage	
	
In	 contrast,	 background	 leakages	 manifest	 when	 there	 are	 minor	 cracks,	

holes,	 deteriorated	 joints,	 or	 fittings	 in	 the	 pipes,	 resulting	 in	 a	 continuous	 and	
subtle	 water	 outflow	 [25,	 26].	 Unlike	 reported	 and	 unreported	 leakages,	
background	 leakages	 in	 WDNs	 remain	 hidden	 and	 do	 not	 immediately	 or	
significantly	 reduce	water	pressure	 [27,	28].	As	a	 result,	 they	often	go	unnoticed	
and	can	persist	 for	 longer	periods	[29,	30].	However,	 it	 is	crucial	to	acknowledge	
that	these	background	leakages	still	contribute	to	the	overall	volume	of	water	loss	
in	the	network	[31,	32].	Approximately	90%	of	water	loss	in	WDNs	is	attributed	to	
these	 leaks.	 Nonetheless,	 due	 to	 the	 sensitivity	 of	 leakage	 to	 network	 pressure,	
reducing	 the	 network	 pressure	 has	 been	 acknowledged	 to	 be	 a	 valuable	
intervention	 tool	 in	 minimizing	 background	 leakage	 as	 well	 as	 reducing	 the	
frequency	of	pipe	bursts.		

	 A	 multitude	 of	 techniques	 have	 been	 proposed	 for	 detecting	 leakages	 in	
WDNs.	 However,	 there	 is	 a	 significant	 uncertainty	 when	 it	 comes	 to	 detecting	
background	leakage,	rendering	these	techniques	ineffective.	Background	leakages	
tend	 to	 increase	 with	 the	 internal	 pressure	 of	 pipes.	 To	 mitigate	 water	 losses	
caused	by	leaking	pipes,	it	is	worthwhile	to	reduce	excessive	pressure	at	strategic	
areas	 in	 the	 WDNs.	 However,	 due	 to	 the	 complexity	 of	 WDNs,	 identifying	 the	
specific	areas	or	nodes	in	the	network	and	the	exact	leaking	pipelines	connected	to	
them,	where	pressure	control	measures	can	be	implemented,	poses	a	challenging	
task.	

	 The	main	contributions	of	this	paper	are	summarized	as	follows:	
1)	 This	 paper	 presents	 an	 ensemble	Machine	 Learning	 (ML)	model	 called	 the	

SVM-CNN-GT	 algorithm,	 which	 combines	 Support	 Vector	 Machines	 (SVM),	
Convolutional	Neural	Network	(CNN),	and	Graph	Theory	(GT).	The	algorithm	
is	 designed	 for	 water	 leakage	 detection	 in	 WDNs	 and	 utilizes	 automatic	
feature	 extraction	 and	 heterogeneous	 dual	 classifiers.	 By	 considering	 flow	
rate,	pressure,	and	temperature	data,	the	SVM-CNN-GT	algorithm	accurately	
evaluates	 leaks.	Additionally,	a	combination	probability	scheme	is	proposed	
to	integrate	diverse	classifier	models	with	varying	prediction	outputs.	
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2)	 To	improve	the	accuracy	of	classification	and	decrease	the	time	required	for	
learning,	 we	 have	 incorporated	 optimal	 learning	 parameters	 into	 our	
ensemble	 SVM-CNN-GT	 model.	 These	 parameters	 include	 water	 pressure,	
flow	rates,	temperature,	and	leak	information.	By	utilizing	these	parameters	
effectively,	we	are	able	to	minimize	the	total	number	of	free	parameters	used.	

3)	 To	enhance	the	accuracy	of	location	estimation,	a	novel	GT-based	local	search	
algorithm	 incorporating	 a	 virtual	 node	 scheme	 is	 being	 introduced.	 The	
proposed	 algorithm	 aims	 to	minimize	 errors	 in	 distance	 estimation,	 repair	
costs,	 and	 time,	 thereby	 providing	 significant	 advantages	 for	 large-scale	
location-aware	applications.	

4)	 To	effectively	 identify	 faults	 and	 locate	 their	 sources,	 the	proposed	method	
employ	a	 range	of	 sensors	 such	as	pressure	sensors,	vibration	sensors,	 and	
flow	 sensors.	 Thus,	 this	 adaptable	 approach	 can	 also	 be	 extended	 to	 the	
detection	of	gas	leaks.	
The	 remaining	 sections	 of	 this	 paper	 are	 organized	 as	 follows:	 Section	 B	

provides	a	comprehensive	review	of	previous	approaches	used	to	detect	and	locate	
pipeline	 leaks	 within	 WDNs.	 Section	 C	 delves	 into	 the	 architecture	 and	
formulations	 of	 the	 proposed	 algorithm.	 In	 Section	 D,	 we	 present	 simulation	
results,	 describe	 the	 experimental	 setup,	 provide	 details	 about	 the	 dataset	 used,	
and	conduct	a	performance	analysis.	Finally,	Section	E	concludes	with	a	summary	
of	the	findings	and	suggests	potential	avenues	for	future	research.	

	
B. Related	Work	

This	section	provides	an	in-depth	analysis	of	various	methodologies	used	to	
detect	and	locate	pipeline	leaks	within	WDNs.	Moreover,	this	section	explores	the	
advantages	and	constraints	associated	with	each	approach.		

Porwal	 et	 al.	 	 [33]	 	 proposed	 a	 weighted-sample	 SVM	 algorithm	 for	 leak	
detection	 in	WDNs,	 which	 enhanced	 classification	 accuracy	 and	 mitigated	 noise	
and	 outliers.	 Their	 algorithm	 outperformed	 other	 methods	 like	 acoustic	 signal	
analysis,	 transient	 signal	 analysis,	 and	 temperature	 variation	 analysis	 in	 leak	
detection	 accuracy.	 The	 proposed	 SVM-CNN-GT	 algorithm	 builds	 upon	 this	
approach	 by	 considering	 optimal	 sensor	 placement,	 optimizing	 detection,	 and	
reducing	costs.	Unlike	their	approach	of	randomly	placing	sensors,	the	SVM-CNN-
GT	algorithm	uses	a	more	strategic	and	efficient	method	for	sensor	placement.	

Zhou	et	al.	[34]	proposed	a	leak	detection	algorithm	for	WDNs	that	combined	
SVM	 and	 Kernel	 Principal	 Component	 Analysis	 (KPCA).	 The	 objective	 of	 their	
approach	was	 to	 improve	 the	accuracy	of	 leak	detection	 in	complex	networks	by	
utilizing	 KPCA	 to	 extract	 relevant	 features	 from	 flow	 data	 and	 SVM	 for	
classification	purposes.	Through	evaluation	using	Flowmaster	software,	the	KPCA	
algorithm	demonstrated	superior	performance	compared	 to	Support	Vector	Data	
Description	 (SVDD)	 and	 k-means	 in	 terms	 of	 leak	 detection	 accuracy.	 However,	
their	 method	 failed	 to	 consider	 the	 significance	 of	 minimizing	 distance	 errors,	
which	led	to	delays	in	leak	repairs	and	increased	costs.	Inefficient	leak	localization	
could	necessitate	multiple	attempts	for	accurate	detection,	resulting	in	additional	
expenses	related	to	excavation,	repair,	and	maintenance.	

Lang	 et	 al.	 [35]	 	 proposed	 a	 leak	 detection	 and	 location	 technique	 that	
combined	the	Least	Squares	Support	Vector	Machine	(LS-SVM)	and	Local	Maxima	
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Decomposition	(LMD).	Their	method	was	evaluated	using	Flowmaster	software	on	
both	simulated	and	real-world	WDNs	data.	The	results	showed	that	their	approach	
outperformed	 wavelet	 transform	 and	 particle	 swarm	 optimization	 in	 terms	 of	
accuracy.	However,	their	algorithm	which	was	designed	by	integrating	LS-SVM	and	
LMD	 algorithms	 lacked	 strategic	 sensor	 placement,	 resulting	 in	 excessive	 sensor	
deployment.	In	addition,	the	assimilation	of	LS-SVM	and	LMD	algorithms	increased	
the	computational	complexity,	leading	to	higher	overhead	and	compromising	leak	
detection	accuracy	in	WDNs.	

	 Lučin	 et	 al.	 [36]	 proposed	 an	 ML	 approach	 for	 identifying	 leak	 locations	
within	WDNs	using	a	Random	Forest	classifier.	They	conducted	simulations	to	test	
the	effectiveness	of	 their	method,	 considering	various	 leak	 scenarios	with	Monte	
Carlo-generated	parameters	and	demand	fluctuations.	By	analyzing	raw	pressure	
sensor	 data	 collected	 over	 24	 hours,	 their	 approach	 accurately	 detected	 and	
located	 leaks	by	utilizing	EPANET	 simulations.	 The	 researchers	 employed	 Scikit-
learn	 and	 high-performance	 computing	 to	 achieve	 reliable	 leak	 detection	 even	
with	sparse	sensor	placement.	However,	the	absence	of	strategic	sensor	placement	
consideration	 in	 their	 approach	 resulted	 in	 increased	 installation	 costs,	 system	
design	 complexities,	 and	 modeling	 efforts.	 Additionally,	 the	 lack	 of	 location	
estimation	 in	 their	algorithm	posed	challenges	 for	precise	 leak	detection,	 leading	
to	water	loss	and	potential	infrastructure	damage.	

		Rajabi	 et	 al.	 [37]	 proposed	 a	 Conditional	 Deep	 Convolutional	 Generative	
Adversarial	Networks	(CDcGANs)	algorithm	for	 leak	detection	and	 localization	 in	
WDNs.	Their	method	aims	to	overcome	the	limitations	of	traditional	leak	detection	
techniques	 by	 leveraging	 the	 power	 of	 deep	 learning	 and	 generative	 adversarial	
networks.	CDcGANs	are	trained	on	a	dataset	of	simulated	pressure	measurements	
to	 learn	 the	underlying	patterns	and	 characteristics	of	 leaks	 in	 the	network.	The	
trained	model	 is	 then	 used	 to	 detect	 and	 localize	 leaks	 in	 real-world	 scenarios,	
achieving	high	accuracy	and	efficiency.	However,	the	researchers	failed	to	consider	
the	 strategic	 placement	 of	 sensors,	 which	 led	 to	 various	 negative	 consequences.	
Firstly,	 this	oversight	resulted	 in	 increased	 installation	costs	as	 the	sensors	were	
not	 optimally	 positioned.	 Strategic	 sensor	 placement	 is	 crucial	 for	 efficient	 and	
cost-effective	 monitoring	 systems,	 as	 it	 ensures	 that	 the	 sensors	 are	 located	 in	
areas	 where	 they	 can	 effectively	 detect	 leaks	 or	 other	 anomalies.	 Without	
considering	this	aspect,	the	researchers	incurred	unnecessary	expenses	during	the	
installation	process.	

Liu	[32]	introduces	an	innovative	approach	to	improve	the	efficiency	of	water	
pipeline	 leakage	 detection	 by	 combining	 ML	 with	 Wireless	 Sensor	 Networks	
(WSNs).	 The	 core	 of	 this	 method	 is	 the	 utilization	 of	 SVM	 as	 a	 classifier	 for	
identifying	 pipeline	 leaks.	 Wireless	 sensors	 are	 strategically	 placed	 on	 water	
pipelines	 to	 collect	 data,	which	 is	 then	 transmitted	 via	 a	 4G	 network.	 To	 reduce	
energy	consumption	in	the	WSNs,	a	"leakage-triggered	networking"	mechanism	is	
employed,	extending	the	system's	operational	life.	To	enhance	the	precision	of	leak	
detection,	 the	 algorithm	 leverages	 techniques	 like	 the	 intrinsic	 mode	 function,	
approximate	 entropy,	 and	 principal	 component	 analysis,	 creating	 a	 set	 of	 signal	
features.	The	evaluation	of	this	method	was	carried	out	using	OPNET	Modeler	14.5	
as	 the	 simulation	 tool,	 involving	 the	 design	 and	 conFigureuration	 of	 different	
network	 layers,	 including	node,	 process,	 and	network	 layers.	 ZigBee	nodes	were	
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chosen	 for	 this	 purpose,	 and	 simulation	 parameters	 were	 adjusted	 to	 meet	 the	
research	requirements.	

Although	 this	 method	 shares	 similarities	 with	 the	 SVM-CNN-GT	 algorithm,	
both	relying	on	SVMs	for	pattern	recognition	and	classification,	a	limitation	in	their	
study	 was	 the	 absence	 of	 strategic	 sensor	 placement.	 This	 led	 to	 increased	
installation	 costs,	 as	 sensors	 were	 not	 optimally	 positioned.	 Proper	 sensor	
placement	 is	 crucial	 for	 cost-effective	 monitoring	 systems,	 ensuring	 they	 are	 in	
locations	suitable	for	efficient	leak	and	anomaly	detection.	

Furthermore,	 the	 SVM-CNN-GT	 algorithm	 integrates	 a	 CNN	 model	 that	
employs	one-dimensional	convolutions	for	sequence	processing.	Its	primary	goal	is	
to	 detect	 pipeline	 leaks	 in	 WDNs,	 enabling	 real-time	 data	 processing,	 anomaly	
identification,	and	leak	prediction.	This	approach	contributes	to	minimizing	water	
loss	 and	 reducing	 environmental	 impacts	 through	 feed-forward	 and	
backpropagation	techniques.	

	
C. Proposed	Leak	Detection	And	Architecture	

The	 architecture	 of	 Internet	 of	 Things	 (IoT)	 based	 WSNs	 for	 WDNs,	 as	
depicted	in	Figure.	3	has	the	potential	to	bring	about	a	revolutionary	change	in	the	
way	we	detect	 and	 localize	 leaks	 in	 pipelines.	 By	 strategically	 deploying	 sensors	
using	GT	principles,	 the	SVM-CNN-GT	algorithm	achieves	remarkable	accuracy	 in	
leak	 detection.	 Optimized	 sensor	 placements	 enhance	 coverage,	 facilitate	 data	
collection,	 and	 enable	 precise	 predictions,	 thereby	 reducing	 false	 alarms.	
Leveraging	the	GT,	the	SVM-CNN-GT	algorithm	maximizes	the	utilization	of	sensor	
data,	leading	to	improved	leak	detection	compared	to	conventional	methods.	This	
is	 accomplished	 through	 the	 integration	of	pressure,	 vibration,	 and	 flow	sensors,	
which	collaborate	to	measure	leaks	and	analyze	water	flow	patterns.	

	

	
Figure	3.		Pipeline	leak	detection	and	Location	architecture	

	
This	 architecture	 allows	 for	 immediate	 analysis	 and	 response	 to	 leaks	 by	

transmitting	 sensor	 data	 from	 the	 IoT	 gateway.	 The	 use	 of	 cloud	 platforms	
enhances	 data	 analysis	 and	 management,	 with	 archived	 data	 offering	 valuable	
insights	 into	 pipeline	 performance	 and	 problems.	 Proactive	 maintenance	 is	

https://doi.org/10.33022/ijcs.v14i2.4674%5d


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i2.4674	 	 2595		 	

achieved	 through	 the	 identification	 of	 trends	 that	 cause	 leaks,	 optimization	 of	
detection	methods,	and	overall	improvement	in	pipeline	management.	

	
A.	 Graph	Theory	
	 GT	 examines	 entity	 relationships	 through	 nodes	 and	 edges,	 essential	 for	

network	optimization	 [38,	 39].	 This	 paper	utilizes	GT	 to	 reduce	 leak	 localization	
errors	 and	 costs,	 optimizing	 sensor	 placement	 in	 WDNs	 for	 accurate	 leak	
localization	 and	 focused	 repairs.	 Efficiency	 benefits	 extensive	 networks,	 with	
virtual	node	search	limits	representing	WDNs	pipelines	as	graphs.	

Consider	 the	 graph  which	 serves	 as	 the	 representation	 of	 the	
pipeline	network,	where	 	represents	the	collection	of	nodes	(pipe	junctions	and	
measurement	points	with	sensor	nodes),	 	represents	the	set	of	edges	connecting	
nodes.	The	edge	weights,	denoted	by	 ,	represent	the	pipe	lengths	between	
nodes	 	and	 	 .	We	assume	the	presence	of	a	continuous	water	leak	at	a	specific	
location	within	the	water	pipe	network,	the	algorithm	employs	equations	(1)	and	
(2)	in	conjunction	with	Dijkstra's	algorithm	to	estimate	the	temporary	location	of	
the	 leak	 along	 the	 graph's	 edge.	 The	 nearest	 linked	 node	 is	 represented	 as	 the	
starting	virtual	node	(V).	

The	 arrangement	 of	 virtual	 nodes	 is	 determined	 by	 considerations	 such	 as	
accuracy	in	resolution	and	computational	resource	demands.	The	cost	 function	is	
responsible	 for	 measuring	 the	 minimal	 error	 in	 distance	 or	 time	 difference	
between	the	actual	and	virtually	generated	leakage	signals	and	can	be	represented	
mathematically	through	the	utilization	of	equation	(1).	

	
		(1)	

	
Where	 	 is	 the	 timestamp	 of	 the	 actual	 leakage	 signal	 at	 node	 ,	 	 is	 the	

timestamp	of	the	actual	leakage	signal	at	neighboring	node	k	in	the	neighborhood	
of	node	 ,	 	is	the	virtually	generated	leakage	signal	at	node	j	corresponding	

to	the	virtual	node	 ,	 represents	the	set	of	neighboring	nodes	of	node	 ,	and	
the	summation	 is	 taken	over	all	neighboring	nodes	 in	 the	neighborhood	 of	
node	 .		

Additionally,	 the	 expression	 for	 the	 virtual	 node can	 be	 represented	 by	
equation	(2):	

	
	argmin 	 	 																					(2)	

	
Where	 	 represents	 the	 virtual	 node	 chosen	 as	 the	 starting	 location,	 and	

argmin	 denotes	 the	 function	 that	 finds	 the	 argument	 (in	 this	 case,	 )	 that	
minimizes	the	cost	function	Cost	( ).	This	process	allows	the	algorithm	to	identify	
the	virtual	node	with	the	least	error,	resulting	in	a	more	accurate	estimation	of	the	
leakage	location	within	the	WDNs.		
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B.	 Support	Vector	Machines	
SVM	 is	 a	 powerful	 supervised	 learning	 model	 that	 leverage	 specialized	

learning	algorithms	 to	 identify	patterns	 in	data	and	make	predictions	 [40].	Thus,	
this	model	are	widely	used	 in	data	analysis	 for	both	classification	and	regression	
tasks	 [41,	 42].	 SVM	work	 by	 creating	 a	 hyperplane	 or	 a	 set	 of	 hyperplanes	 in	 a	
high-dimensional	space	[43,	44].	These	hyperplanes	are	used	to	separate	different	
classes	 or	 to	 approximate	 the	 relationship	 between	 input	 variables	 and	 output	
values,	 as	 illustrated	 in	 Figure.	 4	 The	 goal	 of	 SVMs	 is	 to	 find	 the	 optimal	
hyperplane(s)	 that	maximally	 separate	 the	 data	 points	 or	minimize	 the	 error	 in	
regression	analysis	[45,	46].	

	
Figure	4.	Classification	Process	of	SVM	algorithm	[29].	

	
Figure.	 4	 provides	 a	 visual	 representation	 of	 the	 SVM	 algorithm	 for	

classification.	This	schematic	depiction	illustrates	how	the	algorithm	separates	two	
classes	within	a	dataset	using	a	hyperplane.	The	hyperplane	acts	as	the	solution	for	
classifying	the	data	points	into	their	respective	classes.		

The	SVM	algorithm	has	been	widely	utilized	in	the	field	of	water	management	
to	 detect	 and	 predict	 water	 losses	 caused	 by	 leakage	 in	 WDNs.	 By	 analyzing	
various	data	 variables	 such	 as	water	pressure,	 flow	 rates,	 temperature,	 and	 leak	
information,	the	SVM	algorithm	has	proven	to	be	effective	in	accurately	predicting	
the	location	and	severity	of	leaks	in	WDNs.	

	
1)	Data	Variables	
The	input	data	variables	used	for	training	and	prediction	are	represented	by	

a	data	matrix ,	where	 represents	a	specific	variable	(e.g.,	water	
pressure,	 flow	 rate,	 temperature,	 leak	 information).	 There	 are	 	 total	 data	
variables.	This	data	matrix	 can	be	represented	by	equation	(3).	

	
		 	 	 	 						(3)	
	
equation	 (1)	 serves	 as	 the	 foundation	 for	 defining	 the	 input	 data	 matrix	

where	each	row	 corresponds	to	a	data	point	with	 features	(data	variables).	
This	data	matrix	is	a	crucial	component	used	in	the	SVM	algorithm	for	performing	
tasks	such	as	leak	detection	and	severity	estimation	in	WDNs.	

	
2)	Labels	
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The	equation	 	represents	the	label	vector	for	the	training	data.	
Each	 denotes	the	presence	(1)	or	absence	(-1)	of	a	leak	in	the	WDNs	data	point	
.	 There	 are total	 data	 points	 in	 the	 label	 vector	 .	 This	 is	 represented	 by	

equation	(4):	
	

	 	 	 						(4)	
	
The	 label	 vector plays	 a	 critical	 role	 in	 training	 the	 SVM	 algorithm.	 It	

provides	the	ground	truth	information	needed	for	the	SVM	to	learn	and	distinguish	
between	 leak	and	non-leak	 instances	 in	 the	WDNs	data.	By	associating	 the	 input	
data	 matrix	 with	 the	 corresponding	 label	 vector	 ,	 the	 SVM	 algorithm	 can	
accurately	perform	tasks	like	leak	detection	and	severity	estimation	in	WDNs.		

	
3)	SVM	for	Binary	Leak	Detection	
The	 standard	 SVM	 formulation	 for	 binary	 classification,	 which	 aims	 to	

separate	 the	 data	 points	 into	 two	 classes:	 one	 representing	 leaks	 and	 the	 other	
non-leak	situations.	This	can	be	represented	by	equation	(5):	

	
	(5)	

	
Where,	 	 is	the	weight	vector	of	the	hyperplane,	 	 is	the	bias	term	(intercept),		

is	the	regularization	errors.	It	is	a	hyperparameter	set	by	the	user.	The	objective	is	
to	find	the	optimal	hyperplane	that	best	separates	leak	and	non-leak	data	points.	

	
4)	SVM	for	Multiclass	Leak	Detection	
In	some	cases,	there	might	be	multiple	classes	representing	different	levels	of	

leaks	 (e.g.,	 small	 leaks,	medium	 leaks,	 large	 leaks).	 In	 such	 cases,	 you	 can	 use	 a	
multiclass	SVM	approach,	such	as	one-vs-rest	or	one-vs-one.	The	objective	function	
is	similar	to	the	binary	case,	but	it	extends	to	multiple	classes	and	is	represented	
by	equation	(6):		

	
	(6)	

	
Where,	 	and	 are	the	weight	vector	and	bias	term	for	class	 ,	 is	an	

indicator	function	that	equals	1	if	 is	equal	to	class	  and	0	otherwise.		
The	 objective	 is	 to	 find	multiple	 hyperplanes	 that	 separate	 each	 class	 from	

the	rest.		
	
5)	SVM	for	Leak	Severity	Prediction	
If	the	SVM	is	employed	to	predict	the	severity	of	leaks,	it	can	be	considered	a	

regression	problem.	In	this	case,	the	objective	function	is	represented	by	equation	
(7):		

											(7)	
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Where,		and		are	the	regression	parameters	(weight	and	bias).		
	 The	 objective	 is	 to	 find	 the	 optimal	 regression	 line	 that	 best	 fits	 the	 data	

points,	minimizing	the	regression	error.	
	
C.	 Convolutional	Neural	Network	
		 CNN,	 short	 for	 Convolutional	 Neural	 Network,	 is	 a	 type	 of	 deep	 feed-

forward	Artificial	Neural	Network	(ANN)	that	has	gained	significant	recognition	for	
its	exceptional	ability	 to	generalize	well	when	compared	 to	networks	 that	utilize	
fully	connected	 layers	 [47,	48].	CNNs	have	brought	about	a	 revolution	 in	various	
fields,	 particularly	 in	 computer	 vision	 tasks	 like	 image	 classification	 and	 object	
detection	 [49,	 50].	 They	have	proven	 to	be	highly	 efficient	 in	 extracting	 abstract	
features	 from	 objects,	 especially	 when	 dealing	 with	 spatial	 data	 [51].	 This	 deep	
CNN	 model	 consists	 of	 layers	 dedicated	 to	 processing,	 enabling	 the	 learning	 of	
diverse	input	data	features,	such	as	 images,	at	multiple	 levels	of	abstraction	[52].	
Figure.	 5	 illustrates	 the	 CNN	 as	 a	 deep	 learning	 architecture,	 encompassing	
convolutional	 and	 fully	 connected	 Multilayer	 Perceptron	 (MLP)	 layers.	 By	
automatically	extracting	features	from	raw	data	and	employing	multiple	classifiers,	
the	CNN	shows	potential	for	higher	efficacy	in	classifying	time-series	signals.	

	

	
Figure	5.	Convolutional	Neural	Network	Architecture	with	Fully	Connected	

Multilayer	Perceptron	[31]	
	
The	inclusion	of	Rectified	Linear	Unit	(ReLU)	in	activation	layers	accelerates	

training	 and	 addresses	 vanishing	 gradients	 in	 neural	 networks.	 A	 systematic	
approach	combines	convolutional	and	pooling	layers,	enhancing	training	and	data	
representation.	 Pooling	 involves	 subsampling	 for	 local	 responses.	 This	 paper	
introduces	a	CNN	framework	that	employs	one-dimensional	(1D)	convolutions	for	
sequence	processing,	aiming	to	detect	pipeline	leaks	in	WDNs.	It	processes	sensor	
data,	 identifies	 anomalies,	 and	predicts	 leaks	 in	 real	 time,	minimizing	water	 loss	
and	environmental	impact	through	feed-forward	and	backpropagation.	

	 Here	 are	 the	 mathematical	 equations	 involved	 in	 the	 prediction	 and	
detection	process:	

1)	ReLU	Activation	Function	
 The	ReLU	 is	a	 type	of	activation	 function	 that	 imparts	non-linear	properties	 to	
the	 CNN.	 It	 applies	 the	 function	 	 element-wise	 to	 the	 input	 tensor	 .	 If	 the	( )xf x
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input	value	 	 is	positive,	the	function	outputs	 	unchanged;	otherwise,	 it	returns	
zero.	This	non-linearity,	which	can	be	represented	by	equation	(8)	helps	 the	CNN	
learn	 complex	 patterns	 and	 accelerates	 training	 by	 preventing	 the	 vanishing	
gradient	problem	during	backpropagation.	

	
				 	 	 	 						 		 	 (8)	

	
2)	1D	Convolution	Operation	for	Feature	Extraction												
In	the	context	of	leak	detection	and	localization	in	WDNs,	 	represents	the	

1D	input	tensor	(sensor	data	sequence),	and	Y	 	denotes	the	output	feature	map	
after	applying	1D	convolution.	The	operation	involves	sliding	a	1D	kernel	of	size	K	
(denotes	 by	 )	 along	 the	 input	 sequence	 and	 computing	 the	 dot	 product	
between	the	kernel	and	the	local	region	of	the	sequence	at	each	step.	The	bias	term	
b	 is	 added	 to	 each	 output	 element.	 This	 convolution	 operation,	 which	 can	 be	
represented	by	equation	 (9)	helps	 to	extract	 local	patterns	and	relevant	 features	
from	the	sensor	data,	potentially	indicating	the	presence	of	pipeline	leaks.	

	
		 	 	 	 			 (9)	
	
3)	Max	Pooling	Operation	
After	 each	 convolutional	 layer,	 a	 pooling	 layer	 is	 applied	 to	 reduce	 spatial	

dimensions	and	computational	complexity.	In	leak	detection	within	WDNs,	 	
represents	the	2D	feature	map,	and	 	denotes	the	pooled	output	feature	map.	
The	 pooling	 operation	 subsamples	 the	 feature	 maps	 by	 selecting	 the	 maximum	
value	 within	 localized	 2x2	 neighborhoods.	 Equation	 (10)	 represents	 a	 powerful	
feature	 selection	 process	 that	 retains	 the	 most	 salient	 features	 while	 discarding	
irrelevant	information,	thereby	enhancing	leak	detection	and	localization.	

.	
	
			 			 (10)	

	
4)		Average	Pooling	Operation	
Alternatively,	 average	 pooling	 is	 used	 to	 reduce	 spatial	 dimensions.	 The	

average	 pooling	 operation	 calculates	 the	 average	 of	 the	 values	 in	 localized	 2x2	
neighborhoods	 of	 the	 feature	 maps.	 It	 smooths	 the	 representations	 and	 further	
assists	 in	 detecting	 and	 localizing	 leaks	 by	 focusing	 on	 important	 regions.	 This	
operation	is	represented	by	equation	(11):	

	
				 		 	 	(11)	

	
5)	Backpropagation	for	Weight	Updates	

	 Backpropagation	is	used	during	training	to	update	the	weights	 and	biases	 	
of	 the	 CNN.	 The	 gradients	 and	 represent	 the	 sensitivity	 of	 the	 loss	
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function	with	 respect	 to	 the	weights	and	biases,	 respectively.	They	are	 calculated	
based	on	the	loss	 and	the	output	feature	map	 .	By	iteratively	adjusting	the	
weights	 and	 biases	 using	 these	 gradients,	 the	 CNN	 learns	 to	 better	 predict	 and	
detect	 pipeline	 leaks	 based	 on	 the	 input	 sensor	 data.	 This	 update	 process	 is	
represented	by	equation	(12):	

		
	

	 	 				(12)	

	
	 The	 presented	mathematical	 equations	 play	 a	 pivotal	 role	 in	 the	 pipeline	

leak	 detection	 and	 localization	 process	 when	 utilizing	 CNNs.	 They	 facilitate	 the	
network's	 ability	 to	 process	 sensor	 data	 with	 efficiency,	 extracting	 pertinent	
features,	and	making	real-time	predictions	regarding	the	occurrence	and	location	
of	 leaks.	 As	 a	 result,	 these	 contributions	 lead	 to	 enhanced	 operational	 efficiency	
and	reduced	water	loss	in	WDNs.	

		
D.	 SVM-CNN-GT	Algorithm	
The	 proposed	 SVM-CNN-GT	 algorithm	 optimizes	 leak	 detection	 and	

localization	accuracy	by	 integrating	SVM,	CNN,	and	GT.	 In	addition,	 the	proposed	
algorithm	 minimizes	 distance	 errors	 and	 optimizes	 sensor	 placement	 in	 WDNs	
(see	Algorithm	1).	

	
Algorithm	1:	Proposed	SVM-CNN-GT	
algorithm	

1.	Input:	
			Define	the	graph	representing	the	pipeline	network	with	
nodes	and	edges.	
			Set	the	edge	weights	to	represent	the	pipe	lengths	
between	nodes.	
			Define	the	set	of	neighbouring	nodes	for	each	node.	
Define	the	data	matrix	(X)	containing	input	data	variables	
for	SVM							training	and	prediction.	

			Define	the	label	vector	(Y)	containing	labels	for	SVM	
training.	
2.	Output:	
Estimated	leak	locations	and	starting	virtual	nodes	from	
the	graph-based	localization	algorithm.	
SVM	models	for	binary/multiclass	leak	detection	and	leak	
severity	prediction.	

			CNN	model	for	classifying	time-series	signals	to	detect	
pipeline	leaks.	
3.	For	each	node	in	the	graph,	do:	
4.	For	each	neighbouring	node	in	the	neighbourhood	of	the	
current	node,	do:	

	5.	Calculate	the	cost	function	(Eq.	1)	for	the	current	virtual	
node	using	timestamps	and	virtually	generated	leakage	
signals.	

6.	Find	the	virtual	node	(starting	location)	that	minimizes	
the	cost	function	using	argmin	(Eq.	2).	

7.	Implement	Dijkstra's	algorithm	to	estimate	the	
temporary	leak	location	on	the	graph's	edge	using	the	
selected	virtual	node.	

	8.	Set	the	nearest	linked	node	to	the	temporary	leak	
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location	as	the	starting	virtual	node	(V).	
9.	Prepare	the	data	matrix	(X)	with	input	data	variables	for	
SVM	training	and	prediction.	

10.	Prepare	the	label	vector	(Y)	representing	the	presence	
(1)	or	absence	(-1)	of	leaks	in	the	WDN	data.	

11.	Train	the	SVM	model	for	binary	leak	detection	(Eq.	5)	
using	the	data				matrix	(X)	and	label	vector	(Y).	

12.	Train	the	SVM	model	for	multiclass	leak	detection	(Eq.	
6)	using	the	data	matrix	(X)	and	label	vector	(Y)	if	
applicable.	

13.	Train	the	SVM	model	for	leak	severity	prediction	(Eq.	7)	
using	the	data			matrix	(X)	and	label	vector	(Y)	if	
applicable.	

14.	Define	the	CNN	architecture	with	convolutional	and	
pooling	layers.	
15.	Use	ReLU	activation	function	(Eq.	8)	in	the	CNN	to	
introduce	non-linearity	and	prevent	vanishing	gradients.	

16.	For	each	data	point	in	the	input	sequence,	do:	
17.	Apply	1D	convolution	(Eq.	9)	with	sliding	filters	to	
extract	local	patterns	and	features.	

18.	After	each	convolutional	layer,	apply	max	pooling	(Eq.	
10)	or	average				pooling	(Eq.	11)	to	reduce	spatial	
dimensions.	

19.	Implement	backpropagation	(Eq.	12)	during	training	to	
update	CNN	weights	and	biases	for	better	leak	detection	
performance.	

20.	Real-time	Leak	Detection	and	Localization:	
21.	Use	the	graph-based	localization	algorithm	to	estimate	
leak	locations				with	selected	virtual	nodes.	

22.	Employ	the	SVM	models	for	binary/multiclass	leak	
detection	and	leak							severity	prediction	using	input	
sensor	data.	

23.	Use	the	trained	CNN	model	to	classify	time-series	
signals	and	detect	

		pipeline	leaks.	
24.	End	

	
	 The	proposed	SVM-CNN-GT	algorithm	is	a	comprehensive	solution	aimed	at	

improving	the	accuracy	of	leak	detection	and	localization	in	WDNs.	By	integrating	
SVM,	CNN,	and	GT	algorithms,	this	approach	offers	a	holistic	approach	to	address	
these	 challenges.	 The	 proposed	 algorithm	 incorporates	 graph-based	 localization	
techniques	to	provide	precise	estimation	of	 leaks	and	strategically	places	sensors	
for	 effective	 monitoring.	 Furthermore,	 the	 SVM	 model	 is	 trained	 to	 detect	
binary/multiclass	 leaks	 and	 predict	 their	 severity,	 while	 the	 CNN-based	 signal	
classification	enables	real-time	detection	of	pipeline	leaks.	

By	 combining	 these	 techniques,	 the	 proposed	 algorithm	 significantly	
enhances	 leak	detection	 accuracy,	 reduces	 distance	 errors,	 and	 optimizes	 sensor	
placement	 within	WDNs.	 This	 ultimately	 leads	 to	 improved	 water	 conservation,	
cost	efficiency,	and	positive	environmental	impact.	

	
D. Simulation	Results	

The	 paper	 proposes	 the	 SVM-CNN-GT	 algorithm,	 a	 novel	 and	 efficient	
solution	 for	 leak	 detection	 in	 WDNs	 that	 achieves	 superior	 precision,	 optimal	
sensor	placement,	and	reduced	energy	consumption.	This	algorithm	merges	SVM,	
CNN,	 and	 GT	 to	 attain	 these	 goals	 effectively.	 SVM	 within	 the	 SVM-CNN-GT	
algorithm	executes	binary	and/or	multiclass	leak	detection	and	severity	prediction	
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tasks.	 By	 pinpointing	 and	 categorizing	 leaks	 based	 on	 input	 data	 variables,	 SVM	
augments	the	algorithm's	overall	effectiveness.	

Meanwhile,	CNN	undertakes	a	 crucial	 role	 in	 classifying	 time-series	 signals,	
particularly	 in	 leak	 identification.	 Despite	 its	 visual	 data	 focus,	 CNN	 adeptly	
processes	sequential	data,	extracting	local	patterns	and	leak-related	features.	

GT	 serves	 to	 estimate	 leak	 locations	 using	 a	 graph	 representation	 of	 the	
pipeline	network.	By	evaluating	a	cost	function	for	virtual	nodes	using	timestamps	
and	 generated	 leakage	 signals,	 the	 algorithm	 identifies	 neighboring	 nodes	 and	
gauges	temporary	leak	positions	on	the	graph's	edges	through	Dijkstra's	algorithm.	
This	 strategy	 optimizes	 sensor	 placement,	 curtails	 distance	 errors,	 and	 reduces	
computational	load,	ensuring	precise	and	efficient	leak	localization	in	WDNs.	

The	 SVM-CNN-GT	 algorithm	provides	 a	 holistic	 solution	 to	 address	 diverse	
facets	 of	 leak	 detection	 and	 optimization	 in	 WDNs.	 Its	 efficacy	 is	 validated	 via	
multiple	EPANET	simulations,	where	average	outcomes	affirm	its	effectiveness.		

EPANET	 is	 selected	 due	 to	 its	 widespread	 adoption	 as	 WDNs	 simulation	
platform.	 As	 a	 favored	 open-source	 software,	 EPANET's	 event-driven	 approach,	
multiple	 interfaces,	 and	 efficient	 C++	 protocol	 implementation	 offer	 notable	
advantages	 for	 WDN	 simulations.	 Its	 tailored	 Graphic	 User	 Interface	 (GUI)	 and	
functionalities	 make	 it	 an	 invaluable	 resource	 for	 ML	model	 training.	 The	 user-
friendly	 setup	 of	 EPANET-2	 further	 sets	 it	 apart	 from	 other	 network	 simulators	
like	NS-2,	OMNET,	and	OPNET.		

Table	 I	 provides	 the	 values	 for	 various	 simulation	 parameters	 used	 in	 the	
implementation	of	the	proposed	algorithm.	The	simulation	parameters	include	the	
MAC	 Protocol	 IEEE	 802.11ah,	 the	 number	 of	 68	 nodes,	 the	 total	 simulation	
duration	is	3600	seconds,	the	accuracy	tolerance	of	0.001,	flow	change	tolerance	of	
0.0001,	 pressure	 units	 is	 PSI,	 quality	 time	 step	 is	 1	 second,	 head	 loss	 formula	 is	
Hazen-Williams,	and	reporting	step	is	30	seconds.	

	
Table	1.				Simulation	Parameters	

Parameters  Values  
MAC Protocol IEEE 802.11ah 
Number of Nodes  68 
Total simulation duration in 
seconds  

3600 seconds 

Accuracy Tolerance 0.001 
Flow Change Tolerance 0.0001 
Pressure Units PSI 
Quality Time Step 1 Second 
Flow  Change Tolerance  0.0001 
Head Loss Formula Hazen-Williams 
Reporting steps in seconds 30 seconds 
Architecture IoT-based WSNs for WDNs 
Sensor Types Pressure, Vibration, Flow 
Sensor Data Analysis Real-time 
IoT Gateway Enables data transmission 
Cloud Platforms Efficient data analysis and 

management 
	
In	Figure.	6,	you	can	observe	the	schematic	diagram	of	the	WDNs	case	study,	

which	 is	 denoted	 as	 case	 study	 network	 1	 in	 this	 investigation.	 This	 network	 is	
composed	 of	 one	 supply	 node	 (referred	 to	 as	 the	 tank	node)	 and	45	demand	or	
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load	nodes	(referred	to	as	non-tank	nodes).	Specifically,	node	1	corresponds	to	the	
supply	node,	while	nodes	2	through	46	represent	the	load	nodes.	These	nodes	are	
interconnected	 by	 pipes	 of	 varying	 lengths	 and	 diameters.	 For	 detailed	 data	
regarding	each	pipe	and	node	within	this	network,	consult	Tables	II.	

		

	
Figure	6.	The	schematic	diagram	of	the	case	study	network	1	[32]	

	
Table	2.	Data	Overview	of	Pipes	and	Nodes	in	the	Network,	including	
Timestamp,	Flow	Rate,	Pressure,	Temperature,	and	Leak	Status	

Timestamp	 Flow	rate	
(GPM)	

Pressure	
(PSI)	

Temperature	
(°C)	

Leak	
Status	

2023/03/05	09:28	 10.8	 35.9	 50.2	 1	
2023/03/05	09:29	 11.1	 36.4	 49.5	 0	
2023/03/05	09:30	 11.7	 35.7	 50.0	 0	
2023/03/05	09:31	 12.0	 36.0	 50.5	 0	
2023/03/05	09:32	 11.3	 36.2	 50.8	 1	
2023/03/05	09:33	 10.5	 35.8	 49.8	 1	
2023/03/05	09:34	 10.2	 36.3	 49.5	 0	
2023/03/05	09:35	 9.9	 36.1	 50.0	 0	
2023/03/05	09:36	 10.3	 35.9	 50.5	 1	
2023/03/05	09:37	 11.0	 36.4	 50.2	 1	
2023/03/05	09:38	 11.5	 35.7	 50.0	 0	
2023/03/05	09:39	 12.2	 36.1	 50.8	 0	
2023/03/05	09:40	 11.5	 36.3	 51.0	 1	
2023/03/05	09:41	 10.8	 35.9	 50.2	 1	
2023/03/05	09:42	 11.1	 36.4	 49.5	 0	
2023/03/05	09:43	 11.7	 35.7	 50.0	 0	
2023/03/05	09:44	 12.0	 36.0	 50.5	 0	
2023/03/05	09:45	 11.3	 36.2	 50.8	 1	
2023/03/05	09:46	 10.5	 35.8	 49.8	 1	
2023/03/05	09:47	 10.2	 36.3	 49.5	 0	
2023/03/05	09:48	 9.9	 36.1	 50.0	 0	
2023/0/-05	09:49	 10.3	 35.9	 50.5	 1	
2023/03/05	09:50	 11.0	 36.4	 50.2	 ,1	
2023/03/05	09:51	 11.5	 35.7	 50.0	 0	

	
Table	 2	 presents	 the	 data	 associated	with	 pipes	 and	nodes	 in	 the	 network,	

including	 information	 such	 as	 timestamp,	 flow	 rate,	 pressure,	 temperature,	 and	
leak	 status.	 It	 provides	 a	 comprehensive	 overview	 of	 the	 network's	 hydraulic	
behavior	and	potential	anomalies.	
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A.	 Water	Loss	Volumes	
In	 Figure.	 7,	 the	 leakage	profiles	 of	 nodes	within	 case	 study	network	1	 are	

visualized,	 encompassing	 the	 supply	 node.	 Noteworthy	 are	 nodes	 5,	 30,	 and	 40,	
which	manifest	 the	 highest	 leakage	 outflows,	 signifying	 their	 pivotal	 role	 in	 the	
network's	criticality.	To	tackle	this	concern,	employing	pressure	control	strategies	
is	 advisable.	 The	 objective	 is	 to	mitigate	 leakage	 outflows	 from	 these	 nodes	 and	
curtail	 overall	 network	 leakage.	 The	 essential	 pipes	 connected	 to	 these	 pivotal	
nodes	are	as	 follows:	node	5	 is	 linked	to	pipes	4,	5,	59,	60,	70,	and	71;	node	6	 is	
associated	with	pipes	5,	6,	14,	46,	60,	61,	and	71;	and	node	41	connects	to	pipes	51,	
52,	and	53.	

For	 pipes	 connected	 to	 these	 nodes	 exhibiting	 a	 notably	 high	 leakage	 flow	
rate,	it	is	advisable	to	consider	implementing	pressure	control	measures	at	one	or	
both	of	their	endpoints.	This	approach	will	help	mitigate	the	leakage	problem	and	
enhance	the	overall	performance	of	the	network.	

	
	

	
Figure	7.	Water	Loss	Volumes	per	Pipe	in	the	Case	Study	Network	

	
B.	 Leak	detection	accuracy	
Water	 leak	 detection	 accuracy	 as	 illustrate	 is	 the	 measure	 of	 a	 system's	

ability	 to	 reliably	 and	 accurately	 identify	 the	 presence	 and	 location	 of	 leaks	 in	
WDNs.	In	a	study,	the	results	of	three	algorithms,	namely	SVM-CNN-GT,	CNN,	and	
SVM,	 were	 compared.	 The	 average	 leak	 detection	 accuracies	 achieved	 by	 these	
algorithms	 were	 98%,	 82%,	 and	 78%	 respectively,	 as	 illustrated	 in	 Figure	 8.	
Notably,	 the	 SVM-CNN-GT	 algorithm	 outperformed	 both	 the	 SVM	 and	 CNN	
algorithms	in	terms	of	leak	detection	accuracy.	
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Figure	8.	Accuracy	of	Leak	detection	for	the	Case	Study	Network	1	

	
The	SVM-CNN-GT	algorithm's	strategic	sensor	placement,	which	incorporates	

GT	 principles,	 is	 responsible	 for	 this	 exceptional	 performance.	 .	 In	 contrast,	 the	
SVM	 and	 CNN	 algorithms,	 lacking	 the	 ability	 to	 strategically	 place	 sensors,	
achieved	inferior	water	leak	detection	accuracy.	

	
E. Conclusion	

The	 SVM-CNN-GT	 algorithm	 is	 proposed	 in	 this	 paper	 with	 the	 objective	 of	
improving	 leak	 detection	 accuracy	while	 optimizing	 sensor	 placement	 in	WDNs.	
The	 proposed	 algorithm	 uses	 SVM	 for	 leakage	 detection	 and	 prediction	 by	
analyzing	various	data	variables	such	as	water	pressure,	 flow	rates,	 temperature,	
and	 leak	 information.	 Furthermore,	 CNN	 is	 utilized	 for	 time-series	 signal	
classification	 to	 effectively	 identify	 pipeline	 leaks	 in	 WDNs.	 In	 addition,	 the	
proposed	algorithm	uses	GT,	which	optimizes	 leak	 location	estimates	and	sensor	
placement,	 enabling	 the	 identification	 of	 areas	 prone	 to	 leaks.	 This	 optimization	
process	 not	 only	 reduces	 installation	 costs	 but	 also	 minimizes	 potential	
infrastructure	 and	 environmental	 damage.	 EPANET	 simulations	 have	
demonstrated	 the	 effectiveness	 of	 the	 proposed	 algorithm	 in	 reducing	 sensor	
placement	 while	 improving	 leak	 detection	 accuracy.	 By	 strategically	 placing	
sensors	in	areas	with	high	uncertainty,	the	proposed	algorithm	is	able	to	minimize	
the	 number	 of	 sensors	 needed	while	maximizing	 the	 accuracy	 of	 leak	 detection.	
This	 can	 lead	 to	 significant	 cost	 savings	 and	 improved	 efficiency	 for	 water	
distribution	 systems.	 Future	 work	 may	 involve	 testing	 the	 algorithm	 with	 non-
ideal	sensor	conditions,	such	as	sensor	failures	or	malfunctions,	to	further	enhance	
the	accuracy	and	reliability	of	the	algorithm.	Additionally,	exploring	advanced	data	
analytics	 tools,	 such	 as	 deep	 learning,	 may	 provide	 even	 more	 accurate	 and	
efficient	leak	detection	and	localization.	
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