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The	 C	 programming	 language	 is	 commonly	 used	 for	 creating	 high-
performance	and	low-level	applications	such	as	device	drivers	and	operating	
systems	due	to	its	efficiency.	However,	despite	its	performance	capabilities,	
C	 is	 known	 for	 its	 vulnerabilities	 and	 unsafe	 coding	 practices.	 Rust	 is	
presented	as	an	alternative	 to	C,	with	a	 focus	on	 improved	safety	without	
compromising	 performance.	 Rust	 employs	 ownership	 and	 borrowing	
concepts	 to	manage	memory	 usage,	 ensuring	 that	 the	memory	 cannot	 be	
manipulated	 freely	without	adhering	 to	specific	 rules	designed	 to	prevent	
security	attacks.	In	Rust,	the	memory	restrictions	are	implemented	either	at	
compile	 time	 or	 runtime	 without	 requiring	 the	 programmer's	 direct	
involvement;	 however,	 the	 programmer	 must	 adhere	 to	 a	 strict	 coding	
standard.	In	contrast,	C	programs	can	be	secured	by	manually	implementing	
similar	restrictions	on	memory	access	and	adding	checks	for	unpredictable	
runtime	 behavior.	 While	 this	 approach	 offers	 some	 protection	 against	
attacks,	 it	 requires	 the	 developer	 to	 have	 detailed	 knowledge	 of	memory	
management	 and	 programming	 best	 practices.	 This	 research	 focuses	 on	
evaluating	memory	 safety	 issues	 in	 terms	 of	 spatial	 and	 temporal	 safety,	
comparing	Rust's	security	mechanisms	(or	lack	thereof)	to	C.	Spatial	safety	
involves	 securing	 vulnerable	 memory	 locations,	 while	 temporal	 safety	
ensures	 safe	 access	 to	 memory	 at	 different	 times.	 These	 concepts	 are	
frequently	exploited	by	attackers	to	access	data	or	inject	attack	payload.	Our	
analysis	 demonstrates	 that	 Rust	 offers	 stronger	 guarantees	 for	 memory	
safety	compared	to	manual	security	implementations	in	C.	Nevertheless,	C	
remains	a	viable	option	for	performance-critical	applications,	as	it	can	still	
be	secured	through	careful	coding	practices.	
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A. Introduction	
Nowadays,	computer	programs	are	typically	written	by	developers	using	high-

level	programming	languages,	which	allow	them	to	focus	on	solving	problems	rather	
than	delving	into	the	intricacies	of	hardware.	These	high-level	languages	provide	an	
abstraction	layer	that	simplifies	the	development	process.	Compilers	play	a	crucial	
role	 in	 translating	 these	 high-level	 program	 codes	 into	 machine-readable	
instructions,	making	it	possible	for	computers	to	execute	the	programs.	In	addition,	
the	compilers	are	also	instrumental	in	various	aspects	of	program	development	(i.e.	
optimization,	debugging	and	linting,	security	and	protection	and	portability).	

C	 is	 a	 high-level	 programming	 language	 commonly	 used	 to	 develop	
applications,	designed	collaboratively	by	Dennis	Ritchie	and	Ken	Thompson	[9,	13].	
The	C	programming	language	offers	abstractions	from	computer	hardware,	making	
it	easier	for	programmers	to	write	understandable	code.	Despite	this,	C	still	supports	
low-level	manipulation	of	hardware,	such	as	pointer	operations.	Its	flexibility	comes	
with	certain	risks,	as	C	does	not	prevent	known	security	threats	like	buffer	overflow	
and	use	after	free.	Multiple	compilers	are	available	for	the	C	programming	language,	
including	pcc	(Portable	C	Compiler),	msvc,	clang,	and	gcc	(GNU	Compiler	Collection).	

The	Rust	programming	 language	was	developed	by	Graydon	Hoare	 in	2006	
along	with	 a	 compiler	 called	 rustc	 [2].	 Considered	memory-safe	 and	 thread-safe,	
Rust	 enforces	 these	memory	 safety	 requirements	using	 rules	 such	as	ownership,	
borrowing,	and	lifetime	during	both	the	compilation	and	runtime	processes.	These	
safety	measures	 help	 prevent	 several	 vulnerabilities	 commonly	 found	 in	 C	 from	
being	compiled	or	executed	 in	Rust	programs.	However,	Rust	provides	an	unsafe	
keyword	 that	 allows	programmers	 to	bypass	 some	of	 these	 security	 restrictions.	
When	using	the	unsafe	Rust,	the	security	of	Rust	is	comparable	to	the	plain	C	[6,7].	

Rust's	security	models	are	based	on	many	lessons	learned	from	memory	safety	
issues	in	C	that	are	frequently	caused	by	the	programmers.	Researchers	have	also	
conducted	various	studies	to	understand	how	Rust's	memory	rules	apply	in	practice.	
One	of	such	studies	employed	type	theory	to	create	a	model	of	the	Rust	language	
called	Patina	[12],	which	demonstrated	that	the	Rust's	memory	rules	successfully	
prevent	 issues	 like	 double	 frees	 and	 dangling	 pointers.	 In	 another	 study,	 the	
researchers	have	developed	abstract	models	for	the	parts	of	the	Rust	language	to	
create	the	Featherweight	Rust	(FR)	language	[11].		
	
B. Objective	and	Methodology	

The	main	objective	of	 this	research	 is	 to	 investigate	 the	effectiveness	of	 the	
security	 mechanisms	 in	 Rust	 by	 examining	 how	 the	 mechanisms	 improve	 the	
memory	safety	compared	to	traditional	C	programming	approaches.	Specifically,	we	
focus	on	understanding	and	evaluating	the	spatial	and	temporal	aspects	of	memory	
management	 offered	 by	 the	 Rust	 compiler.	 In	 our	 experiments,	 we	 design	 and	
develop	 two	 sets	 of	 programs:	 one	 in	 C	 language	 that	 violates	 the	 spatial	 and	
temporal	 memory	 safety	 requirements,	 and	 an	 equivalent,	 functionally	 similar	
program	 written	 in	 Rust	 where	 Rust	 should	 automatically	 prevent	 such	 issues	
without	 requiring	 manual	 security	 checking.	 Our	 methodology	 involves	 the	
following	steps:		
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1. Write	 a	 C	 program	 that	 violates	 spatial	 and	 temporal	 memory	 safety	
requirements,	 such	 as	 bounds	 checking,	 null	 pointer	 dereferencing,	 use-
after-free	errors,	etc.,	to	serve	as	our	baseline	for	comparison.	

2. Develop	 an	 equivalent	 Rust	 program	with	 similar	 functionality,	which	 is	
expected	to	automatically	prevent	such	issues	due	to	the	built-in	protection	
offered	by	Rust's	memory	management	mechanisms.	

3. Compare	 and	 analyze	 the	 results	 from	 compiling	 and	 running	 each	
program,	checking	on	errors	or	warnings	produced	during	compilation,	as	
well	as	the	behavior	of	the	compiled	programs	when	executed.	

	
C. Background	on	C	and	Rust	Memory	Management	

C	is	a	widely	used	programming	language	for	system	programming	tasks	such	
as	 creating	 operating	 systems	 or	 embedded	 devices.	 To	 create	 a	 program	 that	
processes	 and	 stores	 data	 we	 need	 to	 access	 the	 main	 memory	 in	 the	 form	 of	
variables.	In	C,	variables	can	have	different	scopes	(local,	global,	or	static)	and	data	
types.	Local	variables	are	declared	within	 functions	or	blocks	of	code	and	have	a	
lifetime	limited	to	the	execution	of	that	function	or	block.	Global	variables	are	visible	
throughout	the	program	and	maintain	their	lifetime	for	the	duration	of	its	execution,	
while	static	variables	retain	their	values	between	function	calls.	Local	variables	in	C	
can	be	initialized	at	declaration	with	either	a	default	value	or	explicitly	assigned	[9].	

In	Rust,	 variables	have	 similar	 scopes	 and	data	 types,	 but	unlike	 in	C,	 local	
variables	do	not	need	to	be	explicitly	 initialized	due	to	Rust's	strong	type	system	
allowing	for	automatic	deduction	of	variable	types.	Rust	also	manages	their	lifetimes	
through	 ownership,	 borrowing,	 and	 lifetimes.	 Global	 variables	 can	 retain	 their	
values	 throughout	 the	entire	program	execution	using	 the	static	 keyword	 like	
their	counterparts	in	C.	Rust	constants	(declared	with	the	const	keyword)	have	a	
fixed	value	 at	 compile-time	and	 cannot	be	modified	during	 runtime.	Variables	 in	
Rust	can	be	mutable	or	immutable	by	default	[7].		

A	notable	feature	of	C	is	its	use	of	pointers,	which	store	memory	addresses.	To	
declare	a	pointer	in	C,	we	prefix	the	variable	name	with	an	asterisk	(*),	such	as	int 
*p	for	a	pointer	to	an	integer	data	type.	The	'address-of'	(&)	operator	retrieves	the	
memory	 address	 of	 a	 specific	 variable,	 while	 the	 dereference	 operator	 (*)	 on	 a	
memory	 address	 produces	 the	 value	 stored	 at	 that	 location.	 A	 characteristic	 of	
pointers	in	C	is	aliasing,	when	multiple	variables	access	the	same	data	in	memory	
[1].	 Aliasing	 can	 provide	 flexibility	 and	 dynamic	 behavior	 for	 object-oriented	
programming	 languages,	 but	 it	 also	 introduces	 potential	 risks	 such	 as	 security	
vulnerabilities	due	to	side	effects	[1,3,8].		

Rust	takes	a	more	stringent	approach	to	pointers	than	C,	with	the	primary	goal	
of	preventing	memory	safety	issues	such	as	aliasing	and	null-pointer	dereferencing.	
In	Rust,	pointers	are	referred	to	as	references,	represented	by	the	'&'	symbol,	and	
come	 in	 three	 types:	 (1)	 Immutable	 references	 denoted	 by	 the	 '&'	 symbol,	 (2)	
Mutable	 references	 signified	 by	 the	 '&mut'	 symbol,	 (3)	 Reference-to-an-iterator	
denoted	by	'iter'.		

In	 C,	memory	 is	 dynamically	 allocated	 on	 the	 heap	 using	 functions	 such	 as	
malloc(),	 calloc(),	 realloc(),	 and	 free().	 Allocated	 memory	 has	 an	
undefined	 lifetime	 until	 it's	 freed	 using	 the	 free()	 function.	 Rust	 uses	 smart	
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pointers,	such	as	Box<T>,	to	allocate	memory	on	the	heap.	These	pointers	manage	
the	 lifetime	 of	 the	 allocated	memory	 and	deallocate	 it	when	 the	 box	 goes	 out	 of	
scope.	To	access	the	value	stored	in	a	Box,	we	can	use	the	dereference	operator	(*)	
as	 in	 C.	 Rust	 introduces	 ownership	 to	 ensure	 proper	 memory	 management	 by	
having	one	owner	at	a	 time	 for	each	value,	with	deallocation	occurring	when	the	
owner	goes	out	of	scope.	The	drop	function	in	Rust	serves	a	similar	purpose	to	the	
free()	 function	 in	 C	 and	 allows	 explicit	 deallocation	 of	 memory	 through	 the	
concept	 of	 ownership.	 References	 in	 Rust	 also	 have	 specific	 lifetimes	 to	 prevent	
dangling	references	from	being	used	after	their	valid	lifetimes	end,	offering	stricter	
controls	over	pointers	than	in	C	[10].			
	
D. Spatial	and	Temporal	Memory	Safety	

In	 this	 research,	 we	 use	 the	 concepts	 of	 spatial	 and	 temporal	 safety	 to	
represent	 the	memory	 safety.	 Spatial	memory	 safety	 deals	with	 the	 appropriate	
allocation,	 initialization,	 and	 deallocation	 of	 memory	 during	 runtime	 to	 avoid	
unintended	accesses	to	memory	addresses	such	as	buffer	overflows	and	use-after-
free	 [1,8].	 In	 C	 programming,	 this	 is	 achieved	 through	 a	 combination	 of	manual	
memory	 management	 using	 functions	 like	malloc(),	calloc(),	realloc(),	
and	free()	and	careful	handling	of	pointers	[5].	On	the	other	hand,	Rust	employs	
strict	 ownership	 and	 borrowing	 rules	 to	 prevent	 the	 vulnerabilities	 related	 to	
spatial	safety.		

Temporal	 memory	 safety	 relates	 to	 managing	 object	 lifetimes	 and	 access	
patterns	 during	 runtime,	 preventing	 dangling	 references	 or	 data	 races	 that	may	
cause	 unintended	 behavior	 or	 security	 vulnerabilities.	 In	 C	 programming,	 this	 is	
achieved	 through	 techniques	 like	 reference	 counting	 or	manually	 controlling	 the	
creation	 and	 destruction	 of	 objects	 [1,8].	 Tools	 like	MemSafe	 [14,15]	 can	 help	 C	
programmers	ensure	spatial	and	temporal	memory	safety.	Meanwhile,	Rust	ensures	
temporal	 safety	 using	 a	 concept	 called	 ownership	 that	 restricts	 the	 number	 of	
owners	for	each	value	and	deallocates	objects	when	their	owner	goes	out	of	scope.		

In	the	following,	we	list	the	specific	memory	violations	identified	by	spatial	and	
temporal	memory	safety	[14,15]:		

1. Bounds	 violations:	 Incorrectly	 accessing	 memory	 outside	 the	 designated	
boundaries	of	an	allocated	block	can	 lead	to	buffer	overflows,	reading	or	
writing	 unintended	 data,	 and	 crashing	 the	 application.	 Spatial	 memory	
safety	ensures	that	memory	is	accessed	within	its	bounds	during	runtime	
by	enforcing	proper	allocation,	initialization,	and	deallocation.	

2. Uninitialized	pointers:	Using	a	pointer	without	first	initializing	it	to	a	valid	
address	can	lead	to	undefined	behavior	or	crashes	in	the	application.	Spatial	
memory	safety	ensures	that	pointers	are	initialized	before	use.	

3. Null	pointers:	Assigning	null	values	to	pointers	indicates	that	they	are	not	
currently	pointing	to	any	data.	Using	null	pointers	without	proper	checks	
can	 lead	 to	 unintended	 behavior	 or	 crashes	 in	 the	 application.	 Spatial	
memory	safety	ensures	that	null	pointers	are	handled	properly.	

4. Manufactured	 pointers:	 Manually	 constructing	 pointers	 without	 using	
functions	 like	 malloc()	 or	 new()	 can	 lead	 to	 incorrect	 memory	
allocation,	resulting	in	bounds	violations	and	other	memory-related	issues.	
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Spatial	memory	safety	ensures	that	memory	is	allocated	correctly	by	either	
manually	managing	it	with	functions	such	as	malloc()	or	relying	on	smart	
pointers.	

5. Dangling	 stack	 pointers:	 Stack	pointers	point	 to	data	 stored	on	 the	 stack	
during	function	execution.	When	a	function	returns,	the	memory	associated	
with	that	stack	pointer	may	become	invalid	if	not	properly	deallocated	or	
reused.	Accessing	dangling	stack	pointers	can	lead	to	unintended	behavior	
or	crashes	in	the	application.	

6. Dangling	heap	pointers:	Heap	pointers	point	 to	memory	allocated	on	 the	
heap	using	functions	such	as	malloc().	Once	the	memory	associated	with	
a	dangling	heap	pointer	is	deallocated,	accessing	it	can	lead	to	unintended	
behavior	or	crashes	in	the	application.	

7. Multiple	 deallocations:	 Deallocating	memory	more	 than	 once	 can	 lead	 to	
undefined	 behavior	 or	memory	 leaks.	 Temporal	memory	 safety	 ensures	
that	 memory	 is	 only	 deallocated	 once	 and	 properly	managed	 during	 its	
lifetime.	

						
E. Design of Experiments 

We	design	experiments	to	compare	the	two	programming	languages	–	C	and	
Rust	–	with	respect	to	their	handling	of	common	memory-related	bugs	that	can	lead	
to	vulnerabilities.	Our	experiment	consists	of	the	following	steps.		

Step	1:	Preparing	Test	Cases.	To	start	with,	we	create	a	pair	of	test	program	
codes	 for	 each	 type	 of	 memory	 security	 violation	 based	 on	 relevant	 examples	
provided	 in	 Table	 1	 [14].	 Initially,	we	write	 the	 test	 case	 in	 the	 C	 programming	
language.	 Next,	 we	 rewrite	 an	 equivalent	 test	 case	 in	 the	 Rust	 programming	
language	that	performs	similar	computations.	These	sets	of	program	codes	serve	as	
a	basis	 for	 further	refinement	and	testing	 to	explore	various	scenarios	while	still	
containing	the	same	memory	safety	violations.		
	

Table	1.	Memory	security	violations	and	examples	[14]. 
Type	of	Violation	 Example	(with	C	programming	language)	
Bounds	violations	 struct { ... int array [100]; ... } s; 

int *p; 
p = &( s.array [101]); 
... *p ... // bounds violations 

Uninitialized	pointers	 int *p; 
... *p ... // uninitialized pointers dereference 

Null	pointers	 int *p; 
p = NULL; 
... *p ... // null pointers dereference 

Manufactured	
pointers	

int *p; 
p = (int*) 42; 
... *p ... // manufactured pointers dereference 

Dangling	stack	
pointers	

int *p; 
void f() { 
int x; 
p = &x; 
} 
void g() { 
f(); 
... *p ... // dangling stack pointers dereference 
} 
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Dangling	heap	
pointers	

int *p, *q; 
p = (int*) malloc (10* sizeof (int)); 
q = p; 
free (p); 
... *q ... // dangling heap pointers dereference 

Multiple	deallocations	 int *p, *q; 
p = (int*) malloc (10* sizeof (int)); 
q = p; 
free (p); 
free (q); // multiple deallocations 

	
Step	2:	Compiling	Test	Cases.	Once	prepared,	each	pair	of	the	program	code	

is	 compiled	 using	 appropriate	 compilers	 –	 gcc	 (C)	 and	 rustc	 (Rust).	 After	
compilation,	both	versions	should	be	ready	for	execution	and	comparison.		

Step	 3:	 Comparing	 Outputs.	 We	 compare	 the	 output	 produced	 by	 the	
compiler	and	the	running	program.	The	analysis	involves	providing	an	explanation	
on	 how	 the	 compiler	 and	 the	 execution	 of	 the	 compiled	 program	 produce	 the	
respective	outputs.	We	derive	a	conclusion	about	the	differences	in	the	way	C	and	
Rust	handle	memory-related	operations,	which	affect	the	resulting	output.		
	
F. Results 

In	this	section,	we	present	the	experimental	results	obtained	from	the	testing	
of	seven	memory	violations:	(a)	Bounds	violations,	(b)	Uninitialized	pointers,	(c)	Null	
pointers,	 (d)	Manufactured	pointers,	 (e)	Dangling	stack	pointers,	 (f)	Dangling	heap	
pointers,	(g)	Multiple	deallocations.	
	
a. Bound	violations	

	
Simple	 Test	 Cases:	 First,	 we	 compare	 simple	 test	 cases	 represented	 by	 Code	 1	
written	in	C	and	Code	2	written	in	Rust.	These	test	cases	are	examples	of	bounds	
violations,	 which	 occur	 when	 a	 program	 accesses	 memory	 beyond	 its	 defined	
bounds,	such	as	an	array	index	that	is	greater	than	the	maximum	index.	Both	test	
codes	 are	 derived	 from	 the	 code	 snippets	 presented	 in	 Table	 1,	 where	we	 have	
intentionally	introduced	a	bounds	violation	by	attempting	to	access	an	array	index	
outside	of	its	allowed	range.	
	
#include < stdio.h > 
struct Struct {int array [5];}; 
void main(){ 
    struct Struct s = { 
      .array = {2, 3, 5, 7, 11}}; 
    int* p; 
    p = &( s.array [6]); 
    printf ("%d\n", *p); 
} 

use std :: print ; 
struct Struct { array : [i32; 5] } 
fn main(){ 
    let mut s = Struct { 
        array : [2, 3, 5, 7, 11]}; 
    let mut p : * mut i32; 
    p = & mut ( s.array [6]); 
    print !("{}\n", *p); 
} 

	
Code	1.	C	program	code	for	bounds	violations 

	
Code	2.	Rust	program	code	for	bounds	violations 

	
Test	Results:	Code	1	is	compiled	successfully	by	gcc	and	executed	without	errors.	
The	output	produced	when	running	Code	1	is	a	value	printed	to	the	standard	output.	
In	 this	 program,	 the	 structure	 Struct	 is	 created	 on	 the	 stack,	 including	 an	 array	
named	 array.	 Accessing	 elements	 within	 s.array	 involves	 interaction	 with	
memory	on	the	stack.	When	attempting	to	access	an	element	outside	the	boundaries	
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of	 s.array,	 the	 value	 retrieved	 is	 not	 part	 of	 the	 allocated	 memory	 for	 the	
structure.	The	outputted	 values	 are	 random	due	 to	ASLR	 (Address	 Space	Layout	
Randomization)	in	the	operating	system.	On	the	other	hand,	Code	2	is	not	accepted	
by	rustc	due	to	a	dereference	operation	on	raw	pointers	p.	In	Rust,	performing	an	
unsafe	 operation	 such	 as	 a	 dereference	 on	 raw	 pointers	 is	 not	 allowed	 by	 the	
compiler.	 This	means	 that	 the	 program	 code	 in	 Code	 2	 cannot	 be	 compiled	 and	
executed	successfully.	
	
Advanced	Cases:	The	modifications	made	to	Code	1	resulted	in	the	creation	of	Code	
3,	which	reveals	that	accessing	out-of-bounds	elements	in	s.array	can	also	affect	
other	fields	within	a	structure	(struct)	in	C	program.	Using	pointers	p	and	q,	we	
can	read	the	values	of	secret1	and	secret2	by	accessing	the	s.array	elements	
at	indices	-1	and	6,	respectively.	The	retrieved	value	is	then	printed	to	the	standard	
output.	Code	4	 is	 a	Rust	 code	modified	 from	Code	2,	 so	 that	 the	variable	p is	 a	
reference	compared	to	raw	pointers.		
	
Test	Results:	Code	3	is	accepted	by	gcc	and	can	be	executed	to	access	out-of-bounds	
elements	while	Code	4	is	not	accepted	by	rustc because	the	compiler	can	see	that	
there	is	an	out-of-bounds	access	to	an	s.array element.	
	
#include < stdio.h > 
struct Struct { 
int secret1; 
int array [5]; 
int dummy ; 
int secret2; 
}; 
void main(){ 
    struct Struct s = { 
        .secret1 = 1337, 
        .array = {2, 3, 5, 7, 11}, 
        .dummy = 0, 
        .secret2 = 1337  
    }; 
    int* p; 
    int* q; 
    p = &( s.array [-1]); 
    printf (" s.array [-1] = %d\n", *p); 
    q = &( s.array [6]); 
    printf (" s.array [6] = %d\n", *q); 
} 

use std :: print ; 
struct Struct { array : [i32; 5] } 
fn main(){ 
    let mut s = Struct { 
        array : [2, 3, 5, 7, 11] 
    }; 
    let mut p : & mut i32; 
    p = & mut ( s.array [6]); 
    print !("{}\n", *p); 
} 

	
Code	3.	Accessing	other	fields	via	s.array 

	
Code	4.	Results	of	modification	of	the	p	variable	data	type 

	
More	Advanced	Cases:	If	the	index	value	used	to	access	an	s.array element is	
dependent	at	runtime,	the	Rust	compiler	may	not	be	able	to	detect	the	out-of-bounds	
access.	One	way	to	make	values	in	Rust	dependent	at	runtime	is	to	return	them	from	
functions.	Code	5	and	code	6	are	a	pair	of	program	codes	resulting	from	modification	
of	code	1	and	code	2	so	that	the	index	for	accessing	s.array elements is	obtained	
from	a	function	call.	
	
#include < stdio.h > 
struct Struct { int array [5]; }; 
void main(){ 
    struct Struct s = { 
       .array = {2, 3, 5, 7, 11} 
    }; 

use std :: print ; 
struct Struct { array : [i32; 5] } 
fn main(){ 
    let mut s = Struct { 
        array : [2, 3, 5, 7, 11] 
    }; 
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    int* p; 
    p = &( s.array [6]); 
    printf ("%d\n", *p); 
} 

    let mut p : * mut i32; 
    p = & mut ( s.array [6]); 
    print !("{}\n", *p); 
} 

	
Code	5.	C	program	code	for	more	advanced	case 

	
Code	6.	Rust	program	code	for	more	advanced	case 

	
Test	Results:	The	two	codes	above	are	accepted	by	each	compiler.	If	the	program	
from	 compilation	 code	 5	 is	 executed,	 the	 program	 still	 has	 the	 same	 behavior,	
namely	printing	values	outside	 the	boundaries	of s.array. Execution	of	 the	
program	 from	 compiling	 Code	 6	 causes	panic.	 Panic	 is	 a	mechanism	 in	 the	Rust	
programming	language	that	stops	the	program	when	an	unrecoverable	error	occurs	
like	exceptions	in	other	programming	languages.	
	
Conclusion:	We	observe	that	C	does	not	provide	memory	safety	guarantees	in	cases	
where	bounds	violations	occur.	Rust	compiler	prevents	the	unsafe	operations	from	
being	compiled	and	provides	enhanced	memory	safety	and	reducing	the	likelihood	
of	runtime	errors.	
	
b. Uninitialized	pointers	

	
Simple	Test	Cases:	Code	7	and	Code	8	are	a	pair	of	program	codes	created	based	
on	the	code	snippets	in	Table	1	regarding	uninitialized	pointers	dereference	in	the	C	
and	Rust	programming	languages.	Both	of	them	did	a	simple	thing,	namely	making	
a	pointer	without	initializing	any	value,	then	performing	a	dereference	operation	on	
the	pointer.	
	
#include < stdio.h > 
void main(){ 
    int* p; 
    printf ("%d\n", *p); 
} 

use std :: print ; 
fn main(){ 
    let mut p : * mut i32; 
    print !("{}\n", *p); 
} 

	
Code	7.	C	program	code	for	pointers	dereference 

	
Code	8.	Rust	program	code	for	pointers	dereference 

	
Test	 Results:	 Code	 7	 is	 accepted	 by	 gcc. When	 the	 program	 is	 executed,	 the	
program	produces	the	message	"Segmentation	fault"	and	exits.	This	occurs	because	
a	dereference	operation	was	performed	on	pointer	p	which	in	this	case	has	a	value	
in	 the	 form	 of	 a	 memory	 address	 that	 cannot	 be	 accessed	 by	 the	 program.	
Meanwhile,	Code	8	will	not	be	accepted	by	the	rustc	compiler.	The	cause	is	that	the	
compiler	detects	the	use	of	a	variable	without	initializing	a	value.	Another	cause	is	
the	dereference	operation	on	the	raw	pointers.	
	
Advanced	 Cases:	 For	 certain	 cases,	 uninitialized	 pointers	 can	 point	 to	 data	 that	
should	not	be	accessed	as	in	Code	9	as	follows.	
	
	
#include < stdio.h > 
void f(){ 
int secret = 1337; 
int* p = & secret; 
    printf ("*p = %d\n", *p; 
} 
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void g(){ 
    int dummy; 
    int* q; 
    printf ("*q = %d\n", *q; 
} 
void main(){ f(); g(); } 
	

Code	9.	Uninitialized	pointers	q points	to	the	secret value in a C program	

	
Test	Results:	In	Code	9,	there	are	two	functions:	f	and	g.	The	main	function	initiates	
the	 call	 to	 function	f	 initially.	 Function	f	 contains	 two	 local	 variables:	 a	 secret	
variable	with	a	value	of	1337	and	a	pointer	p	pointing	to	this	secret	variable.	The	
value	stored	 in	pointer	p	(i.e.,	1337)	 is	printed	to	standard	output.	Following	the	
execution	of	function	f,	 function	g	 is	invoked.	Function	g	has	two	local	variables:	
dummy	variables	and	an	uninitialized	pointer	p.	Interestingly,	these	two	variables	
retain	residual	values	from	the	call	of	function	f.	Consequently,	a	different	pointer	
q	points	to	the	secret	variable	that	can	only	be	accessed	via	function	f.	The	value	
stored	in	pointer	q	is	then	printed	to	standard	output.	
	
Conclusion:	 By	 examining	 the	 above	 test	 scenario,	 we	 can	 conclude	 that	 C	
programming	 language	 still	 lacks	 memory	 safety	 guarantees	 when	 uninitialized	
pointers	occur.	This	vulnerability	could	be	exploited	to	gain	unauthorized	access	to	
sensitive	data.	 	 In	contrast,	Rust	ensures	enhanced	memory	safety	by	preventing	
such	unsafe	operations	from	even	being	compiled.	
	
c. Null	pointers	

	
Simple	Test	Cases:	Code	10	and	Code	11	were	designed	based	on	the	code	snippets	
in	Table	1	pertaining	to	null	pointers	dereference	in	both	C	and	Rust	programming	
languages.	The	purpose	of	these	program	codes	was	to	perform	a	straightforward	
operation:	 creating	 a	 null	 pointer	 and	 then	 attempting	 to	 execute	 a	 dereference	
operation	on	it.	The	intent	behind	these	test	scenarios	was	to	compare	the	behavior	
of	both	languages	when	dealing	with	null	pointers.		
	
#include < stdio.h > 
void main(){ 
    int* p = NULL; 
    printf ("%d\n", *p); 
} 

use std ::{ ptr, print }; 
fn main(){ 
    let mut p : * mut i32 = ptr :: null_mut (); 
    print !("{}\n", *p); 
} 

	
Code	10.	C	program	code	for	null	pointers	dereference 

	
Code	11.	Rust	program	code	regarding	null	pointers	dereference 

	
Test	Results:	Code	10	is	accepted	by	gcc	but	produces	a	"Segmentation	fault"	and	
terminates	 upon	 execution.	 This	 occurs	 due	 to	 pointer	 p	 being	 a	 null	 pointer,	
referring	to	an	invalid	object.	In	contrast,	Code	11	is	rejected	by	rustc.	It	utilizes	the	
null_mut function,	which	returns	mutable	raw	null	pointers.	In	Rust,	raw	pointers	
are	 not	 permitted	 to	 perform	 dereference	 operations	 as	 the	 compiler	 does	 not	
accept	the	code	in	question.		
Conclusion:	 In	these	straightforward	test	scenarios,	 the	gcc	compiler	accepts	the	
provided	C	code	without	any	issues,	even	though	the	code	contains	a	null	pointer	
dereference	operation	 that	 is	 likely	 to	cause	runtime	segmentation	 faults.	On	 the	
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other	hand,	Rust	rejects	the	code	during	compilation	because	it	attempts	to	perform	
an	invalid	dereference	operation	on	a	null	pointer.	
	
d. Manufactured	pointers	

	
Simple	Test	Cases:	Code	12	and	Code	13	were	created	based	on	the	code	snippets	
in	 Table	 1	 pertaining	 to	manufacturing	 pointers	 dereference	 in	 both	 C	 and	 Rust	
programming	languages.	These	program	codes	aim	to	create	a	pointer	that	points	to	
a	self-generated	address	by	type	casting	an	integer	into	a	pointer.	In	this	case,	the	
generated	pointer	points	to	memory	with	address	0x1337,	which	is	chosen	to	not	
point	 to	 any	 valid	 object.	 These	 test	 scenarios	 compare	 the	 behavior	 of	 both	
languages	 when	 dealing	 with	 manually	 created	 pointers	 that	 could	 potentially	
dereference	invalid	memory	addresses.		
	
#include < stdio.h > 
void main(){ 
    int* p = (int*)0x1337; 
    printf ("%d\n", *p); 
} 

use std :: print ; 
fn main(){ 
    let mut p : * mut i32 = 0x1337 as * mut i32; 
    print !("{}", *p); 
} 

	
Code	12.	C	program	code	for	manufacturing	

pointers	dereference 

	
Code	13.	Rust	program	code	for	manufacturing	pointers	dereference 

	
Test	 Results:	 As	 in	 the	 null	 case	 pointers	 dereference,	 code	 12	 received	 by	 gcc.	
Execution	 of	 the	 program	 produces	 the	message	 "Segmentation	 fault"	 and	 exits.	
Meanwhile	 code	 13	 is	 not	 accepted	 by	 the	 rustc	 compiler	 due	 to	 a	 dereference	
operation	in	raw	pointers.	
	
Conclusion:	We	conclude	that	when	a	pointer	created	manually	points	to	an	invalid	
memory	address,	Rust's	built-in	safeguards	help	prevent	errors	or	potential	security	
issues	that	could	occur	at	runtime.	This	is	very	different	from	what	happens	when	
using	the	C	programming	language	under	comparable	circumstances.	
	
e. Dangling	stack	pointers	

	
Simple	Test	Cases:	Code	14	and	Code	15	are	two	test	scenarios	created	based	on	
the	code	snippets	from	Table	1	that	pertain	to	dangling	stack	pointers	dereference	
in	both	C	and	Rust	programming	languages.	In	these	program	codes,	a	global	pointer	
named	p	is	declared,	while	a	local	variable	x	is	defined	within	function	f.	The	value	
of	pointer	p	 is	set	to	the	memory	address	of	variable	x.	 In	the	main	function,	the	
function	f	is	called,	followed	by	a	dereference	operation	on	pointer	p.	The	intention	
behind	creating	these	test	scenarios	was	to	examine	how	both	languages	manage	
dangling	 stack	 pointers,	 which	 could	 potentially	 cause	 errors	 or	 security	
vulnerabilities	if	not	handled	properly.	
		
	
#include < stdio.h > 
int* p; 
void f(){ 
    int x; 

use std :: print ; 
static mut p : * mut i32 = 0 as * mut i32; 
fn f(){ 
    let mut x : i32; 
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    p = &x; 
} 
void main(){ 
    f(); 
    printf ("%d\n", *p); 
} 

    p = & mut x; 
} 
fn main(){ 
    f(); 
    print !("{}\n", *p); 
} 

	
Code	14.	C	program	code	for	dangling	stack	pointers	

dereference 

	
Code	15.	Rust	program	code	for	dangling	stack	pointers	

dereference 

	
Test	Results:	Code	14	is	accepted	by	gcc.	When	the	program	is	executed,	a	random	
value	is	printed	to	the	standard	output.	Each	execution	produces	a	different	random	
value.	The	value	comes	from	the	stack	frame	function	f.	More	specifically,	this	value	
is	the	value	of	the	variable	x	in	the	function	f.	After	the	function	f	is	called,	pointers	
p	 points	 to	 the	 variable	 x	 that	 has	 been	 deallocated.	 Dereference	 operation	 on	
pointers	p	produces	the	value	of	the	variable	x	which	is	then	printed	to	standard	
output.	Meanwhile,	Code	15	is	not	accepted	by	rustc.	One	of	the	error	messages	the	
compiler	produces	indicates	that	the	variable	x	was	read	before	it	was	initialized.	
Another	error	message	 is	 the	use	of	 raw	pointers	with	mutable	properties	 static	
because	it	can	cause	undefined	behavior,	namely	aliasing	and	data	races.	
	
Advanced	Test	Cases:	To	avoid	the	use	of	mutable	static	in	Rust,	the	test	code	is	
modified	 so	 that	 pointer	 p	 is	 updated	 through	 the	 function	 parameter	 f.	
Additionally,	 the	 value	 of	 the	 variable	 x	 can	 be	 initialized	 with	 a	 known	 value	
initially.	The	data	type	owned	by	the	variable	p	in	Code	17	is	a	reference	rather	than	
raw	pointers,	which	are	mutable	static.	To	provide	a	comparative	analysis,	we	also	
create	a	similar	C	program	in	Code	16.	
	
#include < stdio.h > 
void f(int** p_to_p ){ 
    int x = 1337; 
    *p_to_p = &x; 
} 
void main(){ 
    int dummy = 0; 
    int* p = & dummy ; 
    f(&p); 
    printf ("%d\n", *p); 
} 

use std :: print ; 
fn f( mut p_to_p : & mut & mut i32){ 
    let mut x : i32 = 1337; 
    *p_to_p = &mut x; 
} 
fn main(){ 
    let mut dummy : i32 = 0; 
    let mut p : &mut i32 = &mut dummy ; 
    f(& mut p); 
    print !("{}\n", *p); 
} 

	
Code	16.	Advanced	test	case	for	C	program	code 

	
Code	17.	Advanced	test	case	for	Rust	program	code 

	
Test	Results:	As	previous	modification,	Code	16	 is	accepted	by	the	gcc	compiler.	
This	time,	the	value	printed	by	the	program	will	always	be	1337.	Meanwhile,	Code	
17	is	not	accepted	by	the	rustc	compiler.	However,	the	error	message	produced	by	
the	Rust	compiler	is	different	from	before.	The	new	error	message	says	that	variable	
x	 does	 not	 have	 a	 long	 enough	 lifetime.	 This	 is	 because	 the	 variable	 x	 will	 be	
deallocated	at	the	end	of	the	function	f,	while	the	reference	that	points	to	it	can	still	
be	used	outside	the	function	f.	In	other	words,	the	lifetime	of	the	mutable	references	
p_to_p	will	exceed	the	lifetime	of	the	variable	x,	which	does	not	satisfy	the	lifetime	
rules	in	the	Rust	programming	language.	
	
Conclusion:	 Through	 the	 provided	 test	 scenarios,	 Rust	 compiler	 successfully	
prevents	 errors	 or	 potential	 security	 vulnerabilities	 caused	 by	 dereferencing	
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dangling	stack	pointers	in	comparison	to	the	behavior	of	C	programming	language	
when	dealing	with	comparable	situations.	
	
f. Dangling	heap	pointers	

	
Simple	Test	Cases:	Code	18	and	code	19	are	a	pair	of	program	codes	created	based	
on	the	code	snippets	in	Table	1	related	to	dangling	heap	pointers	dereference	in	the	
C	and	Rust	programming	languages.	The	allocation	process	is	carried	out	using	the	
malloc	function	in	the	C	programming	language	and	the	Box:: new	function	in	the	
Rust	 programming	 language.	 Pointers	p	 points	 to	 that	memory	 allocation	 and	 is	
copied	to	become	the	value	pointers	q.	Through	pointers	p,	 the	allocation	is	then	
deallocated.	The	deallocation	process	is	carried	out	using	the	free	function	in	the	
C	programming	language	and	the	drop	function	in	the	Rust	programming	language.	
Finally,	a	dereference	operation	is	carried	out	on	pointers	q. 
	
#include < stdio.h > 
#include < stdlib.h > 
void main(){ 
    int* p = malloc ( sizeof (int)); *p = 2; 
    int* q = p; 
    free (p); 
    printf ("%d\n", *q); 
} 

use std :: print ; 
use std ::{ boxed ::Box, mem ::drop}; 
fn main(){ 
    let mut p : Box<i32> = Box:: new (2); 
    let mut q : Box<i32> = p; 
    drop(p); 
    print !("{}\n", *q); 
} 

	
Code	18.	C	program	code	for	dangling	heap	pointers	

dereference 

	
Code	19.	Rust	program	code	for	dangling	heap	pointers	

dereference 

	
Test	Results:	Code	18	is	accepted	by	gcc.	The	program	will	print	the	value	0	when	
executed.	Meanwhile,	Code	19	 is	not	accepted	by	 rustc.	When	 the	Box	value	p	 is	
copied	to	become	the	Box	value	q,	what	happens	is	the	value	of	Box	p	is	"moved"	to	
Box	q.	 This	 happens	 because	 the	 Box	 data	 type	 has	 a	move	 semantics.	Box	p	 is	
considered	to	have	no	value	and	using	it	as	an	argument	to	the	drop	function	will	
cause	an	error.	
	
Conclusion:	Based	on	the	above	cases,	we	conclude	that	when	dealing	with	dangling	
heap	 pointers,	 like	with	 dangling	 stack	 pointers,	 the	 Rust	 compiler	 prevents	 the	
compilation	of	the	code,	thereby	ensuring	that	a	potentially	vulnerable	program	is	
not	 executed.	 This	 is	 in	 contrast	 to	 C	 programming	 language	 where	 similar	
vulnerabilities	can	exist	without	detection	by	the	compiler.	
	
	
	
g. Multiple	deallocations	

	
Simple	Test	Cases:	Code	20	and	Code	21	are	a	pair	of	program	codes	created	based	
on	the	code	snippets	in	Table	1	related	to	multiple	deallocations	in	the	C	and	Rust	
programming	 languages.	The	two	codes	are	similar	 to	Code	18	and	Code	19.	The	
difference	is	that	the	deallocation	is	carried	out	through	pointers	q	rather	than	the	
dereference	operation	on	pointers	q.	
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#include < stdlib.h > 
void main(){ 
    int* p = malloc ( sizeof (int)); *p = 2; 
    int* q = p; 
    free (p); 
    free (q); 
} 

use std ::{ boxed ::Box, mem ::drop}; 
fn main(){ 
    let mut p : Box<i32> = Box:: new (2); 
    let mut q : Box<i32> = p; 
    drop(p); 
    drop(q); 
} 

	
Code	20.	C	program	code	for	multiple	deallocations 

	
Code	21.	Rust	program	for	multiple	deallocations 

	
Test	 Results:	 Code	 20	 is	 accepted	 by	 gcc.	 When	 the	 program	 is	 executed,	 the	
program	 detects	 a	 double	 free	 (multiple	 deallocations)	 and	 exit.	 This	 protection	
occurs	thanks	to	double	checking	 free	 in	tcache,	which	 is	a	data	structure	used	to	
store	allocated	memory	that	has	been	deallocated.	For	most	systems,	tcache	can	only	
store	 seven	 memory	 allocations.	 If	 more	 than	 seven	 memory	 allocations	 are	
deallocated,	the	remainder	will	be	stored	in	other	data	structures	such	as	unsorted	
bin,	fast	bin,	small	bin,	and	large	bin.	Meanwhile,	Code	21	is	not	accepted	by	the	rustc	
compiler.	Similar	to	the	case	in	Code	19,	the	value	currently	held	by	Box	p	is	now	
owned	by	Box	q,	 thereby	 forbidding	reading	 the	value	 indicated	by	Box	p	by	 the	
compiler.		
	
Advanced Test Cases:  Code	22	is	a	modified	version	of	Code	20	that	executes	the	
deallocation	 process	 for	 eight	 distinct	 memory	 allocations.	 The	 initial	 memory	
allocation	takes	place	using	the	malloc	function,	with	the	allocation	address	stored	
as	an	array	element	r.	Afterward,	the	deallocation	process	is	carried	out	for	seven	
allocations	and	stored	in	tcache,	which	triggers	the	use	of	a	different	data	structure	
(in	this	case,	fast	bin)	to	store	the	remaining	allocation	due	to	tcache	being	full.	The	
fast	bin	data	structure	includes	double	protection	free,	ensuring	that	it	checks	if	the	
last	two	allocated	memory	allocations	are	identical	to	prevent	double	free.	Given	that	
the	 program	 deals	 with	 memory	 designated	 by	 pointers	 p	 and	 pointers	 q	
sequentially,	the	program	will	identify	a	double	free	and	terminate	accordingly.  
 
#include < stdlib.h > 
void main(){ 
int* r[7]; 
    for (int i = 0; i < 7; i++){ r[i] = malloc ( sizeof (int)); *r[i] = 1; } 
int* p = malloc ( sizeof (int)); *p = 2; 
int* q = p; 
    for (int i = 0; i < 7; i++) free (r[i]); 
    free (p); free (q); 
}	

	
Code	22.	Modification	of	C	program	code	

	
	

More	Advanced	Cases:	Unfortunately,	the	protection	in	the	previous	cases	might	
not	 suffice.	 By	 manipulating	 other	 memory	 locations	 between	 the	 deallocation	
processes	involving	pointers	p	and	pointers	q,	a	bypass	can	occur.	To	put	it	more	
explicitly,	Code	23	provides	an	example	of	this.	The	deallocation	process	takes	place	
on	the	memory	allocation	designated	by	pointer	t.	
	
	
#include < stdlib.h > 
void main(){ 

https://doi.org/10.33022/ijcs.v14i2.4640


		 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i2.4640	 2210		

    int* r[7]; 
    for (int i = 0; i < 7; i++){ r[i] = malloc ( sizeof (int)); *r[i] = 1; } 
    int* p = malloc ( sizeof (int)); *p = 2; 
    int* q = p; 
    int* t = malloc ( sizeof (int)); *t = 0; 
    for (int i = 0; i < 7; i++) free (r[i]); 
    free (p); free (t); free (q); 
}	
	

Code	23.	Modification	of	C	program	for	more	advanced	case	

	
Test	Results:	Code	23	is	accepted	by	gcc	without	any	issues	but	does	not	produce	
any	output	since	there	is	no	code	to	print	to	standard	output.	This	also	suggests	that	
a	double	free	has	occurred	in	the	program.	
	
Conclusion:	 In	 these	 last	 cases,	 we	 can	 conclude	 that	 by	 preventing	 multiple	
deallocations	of	heap	memory	during	 the	compilation	stage,	Rust's	programming	
model	yet	 again	 show	 its	 ability	 to	defend	against	more	 sophisticated	attacks	on	
heap	 memory	 management	 compared	 to	 C.	 The	 ownership	 model	 in	 the	 Rust	
programming	 language	 prohibits	 the	 double	 free	 vulnerabilities	 from	 being	
incorporated	into	the	program	during	the	compilation	process.			
	
G. Analysis	and	Discussion	

In	this	section,	we	describe	our	analysis	and	discuss	the	test	results.		
1. Our	 first	 conclusion	 is	 that	 the	 testing	 results	 show	 the	 fact	 that	 the	 C	
compiler	is	allowing	code	containing	the	possibility	of	out-of-bounds	array	
accesses	without	checking,	while	the	Rust	compiler	is	detecting	these	issues	
at	compile	time	and	asking	the	developer	to	modify	their	code	accordingly	
to	 prevent	 runtime	 problems.	 The	 Rust	 compiler	 also	 prevents	 other	
potential	 memory	 safety	 violations	 such	 as	 uninitialized	 stack	 memory	
reading	via	pointers	(uninitialized	pointers),	null	pointer	dereferences,	and	
manipulation	of	fabricated	pointers	during	the	compile	time.		

2. We	also	observe	that	the	C	compiler	accepts	codes	that	may	read	data	from	
other	 functions	 or	 access	 deallocated	 memory,	 potentially	 leading	 to	
unpredictable	 behavior	 and	 potential	 security	 vulnerabilities.	 The	 Rust	
compiler	mitigates	 these	risks	by	enforcing	strict	 lifetime	and	ownership	
rules	at	compile	time	that	prevent	such	issues	occurring	and	guaranteeing	
more	predictable	and	secure	program	behavior.		

3. Rust	clearly	wins	from	the	security	perspective.	However,	it	is	worth	noting	
that	 while	 Rust	 reduces	 the	 likelihood	 of	 security	 vulnerabilities	 being	
exploited	 at	 runtime	 by	 enforcing	 stricter	 rules,	 this	 may	 come	 with	 a	
steeper	 learning	 curve	 due	 to	 the	 programmers	 need	 to	 focus	 more	 on	
memory	safety.	In	contrast,	C's	less	stringent	enforcement	of	memory	safety	
rules	allows	for	greater	freedom	and	potential	efficiency	in	programming,	
but	with	a	higher	risk	of	security	vulnerabilities	arising	at	runtime	due	to	
the	compiler's	acceptance	of	code	containing	potential	security	problems	
without	 any	 warnings	 or	 errors.	 To	 be	 fair,	 however,	 Rust	 still	
accommodates	the	programmer's	choice	to	engage	in	unsafe	operations,	if	
necessary,	by	using	unsafe	Rust	[6].		
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H. Comparison	of	C	and	Rust	Compilation	Times	

In	 the	 previous	 sections,	 we	 have	 shown	 that	 Rust's	 compiler	 can	
automatically	check	the	security	problems	by	rejecting	vulnerable	codes,	whereas	
C's	 compiler	 does	 not	 check	 many	 security	 issues,	 raising	 questions	 about	 the	
compilation	overhead	of	the	Rust	compiler.	Theoretically,	due	to	its	lower	level	of	
abstraction,	 the	 C	 programming	 language	 should	 have	 faster	 compilation	 times	
compared	to	the	Rust	programming	language.	However,	it's	important	to	note	that	
to	write	 secure	 C	 programs,	 additional	 efforts	may	 be	 required	 through	manual	
memory	safety	checks	that	must	be	performed	by	programmers.	This	overhead/cost	
can	 be	 comparable	 to	 the	 time	 needed	 by	Rust	 programmers	 adhering	 to	 Rust's	
strict	standard	due	to	its	higher	learning	curve.	

In	 this	 section,	we	 present	 experimental	 comparisons	 of	 compilation	 times	
between	C	and	Rust	programming	languages	using	twelve	cases	(a	to	l).	Seven	cases	
are	 derived	 from	 codes	 used	 in	 the	 previous	 section:	 (a)	 Bounds	 violations,	 (b)	
Uninitialized	 pointers,	 (c)	Null	 pointers,	 (d)	Manufactured	 pointers,	 (e)	Dangling	
stack	pointers,	(f)	Dangling	heap	pointers,	and	(g)	Multiple	deallocations.	We	also	
include	 five	 more	 cases	 from	 comparable	 C	 and	 Rust	 programs	 related	 to	 data	
structures	and	algorithms	that	are	often	needed	in	a	computer	program.	The	cases	
are:	(h)	Linked	list,	(i)	Binary	search	tree,	(j)	Extended	binary	search	tree,	(k)	Double	
linked	 list,	 and	 (l)	 Extended	 double	 linked	 list.	 For	 each	 case,	 we	 compare	 the	
compilation	time	of	C	vs	Rust	when	utilizing	the	similar	code.	

Figure	1	illustrates	the	results	from	our	experiment	comparing	compilation	
times	for	C	and	Rust	programs	using	a	set	of	twelve	pairs	of	test	codes.	The	tests	
were	executed	on	an	Intel	x86	computer	(Linux	Ubuntu	24,	 Intel	 i3	12100,	16GB	
RAM).	

	

Figure	1.	Compilation	time	for	12	cases	(a	to	l)	in	milliseconds	(ms)	
	
Based	on	the	experimental	result,	we	conclude	the	following:		
1. Experiments	a,	b,	e,	f,	and	g	have	very	close	or	identical	compilation	times	
for	both	C	and	Rust,	with	differences	generally	within	below	10	ms.	This	
suggests	that	for	these	scenarios,	there	is	little	performance	advantage	in	
using	either	language	(C	or	Rust)	during	the	compilation	phase.	

2. Experiments	h,	i,	j,	and	k	demonstrate	slightly	faster	compilation	times	for	
C	 compared	 to	 Rust	 while	 in	 experiments	 c	 and	 d,	 the	 Rust	 compiler	 is	
slightly	faster.	However,	the	differences	are	still	very	small	(below	20	ms).	
This	indicates	that	Rust's	memory	safety	features	may	contribute	to	slightly	
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longer	compilation	times	in	some	scenarios,	but	in	many	cases,	this	feature	
does	not	impact	the	compilation	time.	

3. In	experiment	l,	Rust	has	a	noticeably	slower	compilation	time	compared	to	
C	(110	ms	versus	30	ms).	This	suggests	that	in	some	specific	scenarios	the	
C	compiler	is	significantly	faster	over	Rust.	We	believe	that	the	number	of	
these	scenarios	should	be	small,	and	the	potential	benefits	of	using	Rust	for	
memory	safety,	security,	and	modern	language	features	may	still	outweigh	
the	compilation	time	differences.	

						
I. Conclusion	

Our	research	demonstrates	that	the	Rust	compiler	outperforms	the	C	compiler	
in	 detecting	 memory	 security	 vulnerabilities	 during	 early	 development	 stages	
(compilation).	 While	 C	 offers	 greater	 flexibility,	 creating	 a	 secure	 C	 program	
requires	manual	security	checks,	which	necessitate	additional	effort	and	expertise.	
Adopting	Rust's	security	model	allows	developers	to	significantly	reduce	common	
memory-related	bugs	risks.	Our	research	also	shows	that	the	performance	overhead	
associated	with	using	Rust	is	minimal.	Rust	can	serve	as	an	applicable	and	secure	
choice	 for	 many	 modern	 software	 development	 projects	 due	 to	 its	 enhanced	
security	 without	 compromising	 performance.	 However,	 as	 Rust	 is	 a	 stricter	
language,	there	is	a	learning	curve	cost	involved	in	transitioning	to	its	ecosystem.	
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