
The Indonesian Journal of Computer Science 
http://www.ijcs.net/	

Volume	14,	Issue	3,	June	2025	
https://doi.org/10.33022/ijcs.v14i3.4617	

Attribution-ShareAlike	4.0	International	License	 4393		
      

	
Optimizing	the	Performance	of	the	PSHS	CARC	Knowledge	Hub:	A	Mixed-Method	
Evaluation	of	a	Moodle-Based	LMS	
	
Graceson	D.	Cuyasen1	
gdcuyasen@carc.pshs.edu.ph1	
1	University	of	the	Cordilleras,	Baguio	City,	Philippines	
	
Article	Information	  Abstract	

Received	:	 		6	Jan	2025	
Revised	 :	 		6	Jun	2025	
Accepted	:	 16	Jun	2025	

 

 
This	study	focuses	on	optimizing	the	performance	of	the	Philippine	Science	
High	 School	 –	 Cordillera	 Administrative	 Region	 Campus	 Knowledge	 Hub	
(PSHS-CARC	KHub),	 a	Moodle-based	 Learning	Management	 System	 (LMS),	
by	 addressing	 key	 performance	 issues	 such	 as	 slow	 response	 times.	 A	
mixed-method	 approach,	 including	 a	 comprehensive	 literature	 review	 and	
experimental	testing,	was	used	to	identify	effective	strategies	for	hardware,	
software,	 and	 front-end	 optimization.	 The	 study	 examined	 the	 impact	 of	
server	configurations,	memory	upgrades,	and	Apache	module	optimizations	
on	system	performance.	Results	indicate	that	hardware	optimizations	(such	
as	 SSD	deployment),	 software	 improvements	 (including	 database	 indexing	
and	 caching),	 and	 front-end	 enhancements	 (such	 as	 minimizing	 HTTP	
requests	and	optimizing	images)	led	to	measurable	improvements	in	system	
scalability	 and	 responsiveness.	 While	 performance	 tests	 showed	 reduced	
response	 times	 and	 stable	 throughput,	 occasional	 delays	 for	 high-latency	
transactions	were	observed.	These	 findings	provide	actionable	 insights	 for	
optimizing	 Moodle-based	 LMS	 platforms,	 improving	 both	 user	 experience	
and	system	efficiency.	

Keywords		  

performance	
optimization,	mixed-
method	evaluation,	
server	performance	
metrics,	MOODLE,	
learning	management	
system	
	

 

 

 

  
	

http://www.ijcs.net/
https://doi.org/10.33022/ijcs.v14i3.4617
https://creativecommons.org/licenses/by-sa/4.0/


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i3.4617	 	 4394		 	

A. Introduction	
The	 PSHS-CARC	 Knowledge	 Hub,	 a	 Moodle-based	 Learning	 Management	

System	(LMS),	 faces	critical	performance	challenges,	such	as	server	crashes,	slow	
response	times,	and	high	resource	consumption.	These	issues	disrupt	the	teaching	
and	learning	process,	compromise	system	stability,	and	negatively	impact	the	user	
experience.	 As	 an	 essential	 platform	 for	 delivering	 STEM	 education,	 addressing	
these	challenges	is	crucial	to	ensure	reliability,	minimize	downtime,	and	optimize	
resource	efficiency.	

The	 importance	 of	 Learning	 Management	 Systems	 (LMSs)	 has	 grown	
significantly	 within	 Science,	 Technology,	 Engineering,	 and	 Mathematics	 (STEM)	
programs	and	courses	over	the	past	decade,	driven	by	better	access	to	the	internet	
and	advancements	in	online	teaching	and	learning	technologies.	Many	educational	
institutions	 have	 successfully	 implemented	 LMSs	 and	 continue	 to	 explore	 their	
effectiveness	 across	 different	 platforms.	 Recent	 research	 in	 STEM	 education	
indicates	 that	 various	 LMSs	 and	 their	 associated	 tools	 enhance	 student	
engagement,	 motivation,	 and	 collaboration,	 performance,	 retention,	 and	 critical	
thinking.	 Furthermore,	 LMSs	 enable	 STEM	 educators	 to	 monitor	 learning	
outcomes,	 predict	 student	performance	 (facilitating	 early	 identification	of	 at-risk	
students),	 and	 use	 this	 information	 to	 adapt	 and	 refine	 their	 teaching	 practices.	
The	 future	of	STEM	education	can	be	 further	enhanced	 through	 innovative	LMSs	
and	 technology-driven	 learning	 resources,	 including	 but	 not	 limited	 to	 online	
laboratories,	online	 tutorials,	and	virtual	reality	applications.	A	recent	systematic	
review	 of	 research	 trends	 in	 STEM	 education	 suggests	 that	 "learning	
environments,"	 which	 include	 LMSs,	 are	 a	 key	 area	 poised	 for	 continued	
evolution[1].	

Modular	 Object-Oriented	 Dynamic	 Learning	 Environment	 (MOODLE)	 is	 an	
open-source	 online	 learning	 management	 system	 recognized	 for	 its	 user-
friendliness,	 intuitive	 interface,	 and	 extensive	 features.	 It	 is	 widely	 utilized	 by	
schools,	 universities,	 and	 businesses	 seeking	 to	 provide	 distance	 education.	
Moodle	supports	educational	and	communication	functions	to	establish	an	online	
learning	environment,	enabling	the	creation	of	interactive	courses	and	fostering	a	
network	of	interactions	among	educators,	learners,	and	learning	resources.	Due	to	
its	numerous	advantages,	Moodle	has	become	a	go-to	platform	in	the	field	of	online	
education	[2].	

Apache	 JMeter	 can	be	used	 to	 load	 test	Moodle	by	generating	heavy	 server	
loads	to	assess	performance	under	different	conditions.	Moodle	includes	a	JMeter	
test	 plan	 generator,	 allowing	 setup	 for	 local	 benchmarking	with	 adjustable	 user	
loads	and	configurations.	It’s	essential	to	perform	these	tests	on	a	non-production	
environment	to	avoid	disruptions.	The	setup	involves	preparing	servers	resources,	
Java	 installation,	and	specific	Moodle	configurations,	with	customizable	 test	sizes	
based	on	user	loads.[3]	

This	study	aims	to	identify	and	implement	suitable	optimization	techniques,	
such	 as	 caching	 and	 load	 balancing,	 to	maximize	 the	 use	 of	 key	 resources	 (CPU,	
RAM,	database	efficiency).	Despite	 the	existing	 research	on	Moodle	optimization,	
there	 remains	a	 significant	gap	 in	addressing	 these	 technical	performance	 issues	
tailored	 specifically	 to	 the	unique	high-demand	educational	 setup	of	PSHS-CARC.	
This	research	is	conducted	exclusively	to	bridge	that	gap,	focusing	on	the	specific	

https://doi.org/10.33022/ijcs.v14i3.4617


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i3.4617	 	 4395		 	

needs	and	 challenges	 faced	by	PSHS-CARC's	 educational	 environment.	Moreover,	
existing	research	has	predominantly	been	conducted	on	laboratory	servers	rather	
than	on	actual	servers	hosting	deployed,	active	Moodle	environments.	This	 limits	
their	 practical	 applicability,	 as	 they	 often	 fail	 to	 capture	 the	 real-world	
complexities	of	an	active	system.	Additionally,	many	studies	lack	a	mixed-method	
approach	 that	 combines	 quantitative	 performance	 metrics	 with	 qualitative	
feedback	 from	 users	 and	 administrators,	 further	 reducing	 the	 relevance	 of	 their	
findings	to	practical	implementation.	

To	 address	 these	 gaps,	 this	 study	 employs	 a	 mixed-method	 approach	 that	
includes	 a	 comprehensive	 literature	 review,	 analysis	 of	 server	 metrics,	 and	
qualitative	feedback	from	system	users	and	administrators.	The	key	contributions	
of	 this	 study	 include	 developing	 targeted	 recommendations	 for	 database	 tuning,	
caching,	 and	 load	 balancing,	which	 significantly	 enhance	 the	 scalability,	 stability,	
and	 reliability	 of	 the	 LMS.	 The	 findings	 provide	 a	 framework	 that	 educational	
institutions	can	use	to	deploy	more	efficient	and	adaptable	LMS	solutions	to	meet	
increasing	user	demands	and	technological	advancements.		

Building	 on	 the	 challenges	 and	 objectives	 outlined,	 this	 research	 seeks	 to	
address	specific	aspects	of	optimizing	the	PSHS-CARC	Knowledge	Hub.	It	is	guided	
by	 three	 key	 questions:	 What	 optimization	 strategies	 best	 enhance	 the	
performance	of	the	PSHS-CARC	Knowledge	Hub?	How	do	hardware,	software,	and	
instructional	 design	 improvements	 collectively	 contribute	 to	 the	 scalability	 and	
efficiency	of	Moodle	 in	educational	environments	 like	the	PSHS-CARC	Knowledge	
Hub?	 What	 practical	 strategies	 can	 be	 implemented	 to	 reduce	 server	 load	 and	
maintain	 system	 reliability,	 particularly	 in	 managing	 resource-intensive	 content	
and	 plugins?	 By	 addressing	 these	 questions,	 the	 study	 aims	 to	 develop	 targeted	
solutions	 that	 ensure	 the	 stability,	 scalability,	 and	 efficiency	 of	 the	 system	 in	 a	
high-demand	educational	context.	
	
B. Methodology	

The	methodology	 for	 this	 study	 is	 structured	 across	 four	 key	 phases,	 each	
designed	 to	 address	 specific	 aspects	 of	 performance	 optimization	 for	 the	 PSHS	
CARC	 Knowledge	 Hub,	 a	 Moodle-based	 Learning	 Management	 Systems	 (LMS).	
These	 phases	 include	 a	 combination	 of	 literature	 review,	 case	 studies,	 and	
experimental	 testing	 to	 identify	 and	 evaluate	 effective	 strategies	 for	 enhancing	
LMS	performance.	By	 employing	 a	mixed-method	 approach,	 the	 study	 integrates	
both	 qualitative	 insights	 and	 quantitative	 performance	 data,	 providing	 a	
comprehensive	 framework	 to	 optimize	 resource	 utilization,	 improve	 response	
times,	and	ensure	scalability.		

The	 Preliminary	 Research	 and	 Literature	 Review	 phase	 was	 to	 compile	
existing	 optimization	 techniques	 used	 in	 Moodle-based	 Learning	 Management	
Systems	 (LMS)	 to	 determine	 which	 methods	 were	 effective	 across	 different	
environments.	 The	 research	 involved	 a	 literature	 review	 of	 current	 studies	 on	
Moodle	 performance	 and	 a	 benchmark	 analysis	 comparing	 global	 tools	 and	
techniques	for	LMS	optimization.		The	outcome	was	a	list	of	strategies	which	could	
be	tested	to	improve	Moodle's	efficiency.	

The	 Case	 Studies	 and	 Interviews	 phase	 aimed	 to	 gather	 qualitative	 data	
through	 case	 studies	 on	PSHS	 campuses	 using	Moodle-based	 systems	 to	 identify	

https://doi.org/10.33022/ijcs.v14i3.4617


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i3.4617	 	 4396		 	

real-world	 challenges	 and	 applied	 optimization	 solutions.	 The	 research	 involved	
selecting	 three	 (3)	 campuses	 with	 varying	 infrastructure	 levels	 and	 conducting	
semi-structured	interviews	with	the	LMS	Coordinators.	These	interviews	explored	
performance	 challenges,	 system	 configurations,	 and	 optimization	 practices.	 The	
outcome	 was	 a	 set	 of	 insights	 into	 the	 strengths	 and	 weaknesses	 of	 current	
optimization	 approaches	 in	 real-world	 settings,	 which	 informed	 subsequent	
experimental	phases.	

The	Experimental	Research	phase	aimed	to	evaluate	and	implement	various	
optimization	 techniques	 for	 the	 PSHS	 CARC	 Knowledge	 Hub,	 a	 Moodle-based	
Learning	Management	 System	 (LMS)	 actively	 deployed	 at	 the	 time.	Optimization	
strategies	 included	 expanding	 Random	 Access	 Memory	 (RAM)	 capacity,	 and	
software	 and	 backend	 optimization.	 Performance	 testing	 was	 conducted	 using	
JMeter	 to	 simulate	user	 loads	 and	measure	key	metrics,	 including	 response	 time	
and	throughputs.	Data	was	collected	before	and	after	implementing	optimizations	
to	 compare	performance	 improvements	under	different	user	 loads.	The	outcome	
was	 a	 set	 of	 quantitative	 results	 identifying	 the	 most	 effective	 optimization	
techniques	 under	 specific	 conditions,	 providing	 insights	 for	 enhancing	 system	
performance	in	similar	educational	contexts.		

The	host	system	is	powered	by	an	Intel®	Xeon®	E-2286G	processor	running	
at	 4.00	 GHz	 with	 12	 physical	 cores.	 It	 includes	 an	 integrated	 Matrox	 G200eW3	
Graphics	Controller,	40	GB	of	RAM,	and	an	8	TB	SATA	HDD	spinning	at	7,200	RPM.	
The	server	operates	on	the	Xen	Cloud	Platform	-	Next	Generation	(XCP-ng)	version	
8.2.1,	an	open-source	virtualization	platform	based	on	the	Xen	hypervisor.	XCP-ng	
provides	enterprise-grade	features	such	as	live	migration	and	snapshots,	making	it	
an	efficient	and	cost-effective	choice	for	data	center	environments	[16].	

The	PSHS-CARC	KHub	LMS	was	deployed	on	a	virtual	machine	(VM)	hosted	
on	this	platform,	configured	with	a	4-core	virtual	CPU,	4	GB	of	RAM,	and	100	GB	of	
storage.		

The	Data	Analysis	and	Synthesis	phase	integrated	findings	from	the	previous	
phases	to	develop	a	comprehensive	understanding	of	the	optimization	techniques	
for	 Moodle-based	 Learning	 Management	 Systems	 (LMS).	 This	 phase	 focused	 on	
analyzing	 qualitative	 data	 from	 Phases	 1	 and	 2	 through	 thematic	 analysis	 and	
interpreting	 quantitative	 data	 from	 Phase	 3	 through	 simple	 observation	 of	
performance	metrics.	
	
C. Result	and	Discussion	

This	 section	 delves	 into	 the	 findings	 of	 this	 research,	 presenting	 a	
comprehensive	 analysis	 of	 both	 preliminary	 research	 and	 relevant	 literature.	 By	
examining	various	optimization	techniques,	we	aim	to	highlight	the	most	effective	
strategies	 for	 enhancing	 Moodle's	 performance.	 The	 discussion	 is	 structured	 to	
address	key	areas	of	hardware	and	software	optimization,	providing	insights	into	
their	impact	on	user	experience	and	system	efficiency.	

	 This	 section	 presents	 the	 results	 of	 preliminary	 research	 and	 a	 review	 of	
relevant	 literature,	 establishing	 a	 foundational	 understanding	 of	 Moodle	
optimization	 and	 identifying	 existing	 gaps	 in	 the	 field.	 The	 solutions	 identified	
through	 the	 literature	 review	 encompass	 Hardware	 Optimization,	 Software	 and	

https://doi.org/10.33022/ijcs.v14i3.4617


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i3.4617	 	 4397		 	

Backend	 Optimization,	 Front-End	 Optimization,	 and	 Instructional	 Design	
Optimization.	

For	 Hardware	 Optimization,	 implementing	 solid-state	 drives	 (SSDs)	 for	
Moodle	 servers	 and	 databases	 can	 significantly	 reduce	 user	 response	 times.	 A	
study	 demonstrated	 that	 deploying	Moodle	 on	 SSDs	 led	 to	 the	most	 substantial	
decrease	in	end-user	response	time	compared	to	other	optimization	techniques[4].	
For	this	research	however,	implementing	solid	state	drives	is	impossible	as	access	
to	the	server	hardware	is	limited.	

Software	 and	 Backend	 Optimization	 includes	 regular	 updates	 and	
maintenance	of	Moodle	are	essential	 to	ensure	optimal	performance.	Approaches	
such	as	efficient	database	indexing,	caching	mechanisms,	and	load	balancing	have	
been	recognized	as	effective	strategies	for	improving	Moodle's	responsiveness	and	
scalability[5].	

Improving	 the	 user	 interface	 and	 experience	 is	 vital	 for	 user	 engagement.	
Techniques	 like	 minimizing	 HTTP	 requests,	 optimizing	 images,	 and	 leveraging	
browser	 caching	 can	 enhance	Moodle's	 front-end	 performance,	 leading	 to	 faster	
page	loads	and	a	more	responsive	interface	[4].		

This	 section	 presents	 insights	 gathered	 from	 case	 studies	 and	 interviews,	
highlighting	real-world	examples	and	experiences	that	 illustrate	the	effectiveness	
of	various	Moodle	optimization	strategies.	

Minimizing	 the	 use	 of	 Moodle	 plugins,	 particularly	 those	 that	 require	
significant	 system	 resources,	 such	 as	 real-time	 analytics,	 video	 conferencing,	
advanced	reporting	tools,	or	interactive	content	tools	like	H5P.	

To	 enhance	 server	 performance,	 campuses	 offering	 KHub	 services	
exclusively	through	a	local	network	power	down	the	server	daily.	Since	there	is	no	
demand	 for	 server	usage	during	 the	night,	 the	 server	 is	 shut	down	at	 the	end	of	
each	day	after	dismissal	and	restarted	the	following	morning.	This	approach	helps	
reduce	energy	consumption,	minimize	hardware	wear,	and	maintain	overall	server	
efficiency.	

Utilizing	 third-party	 websites	 to	 host	 resource-intensive	 content	 can	
significantly	enhance	system	performance.	For	example,	uploading	videos	to	video	
streaming	platforms	and	sharing	only	the	links,	or	using	cloud	storage	services	for	
large	 files	and	providing	 links	 to	 those	 files,	reduces	 the	 load	on	the	 local	server.	
This	 approach	 not	 only	 improves	 overall	 system	 performance	 but	 also	 ensures	
better	accessibility	and	user	experience.	

Conducting	 regular	 server	 clean-ups	 is	 essential	 for	 maintaining	 optimal	
performance.	Automating	this	process	whenever	feasible	ensures	consistency	and	
efficiency,	 reducing	 the	 likelihood	of	performance	 issues	 and	minimizing	manual	
intervention.	

This	 section	 presents	 findings	 from	 experimental	 research,	 showcasing	
controlled	 studies	 that	 demonstrate	 the	 impact	 and	 effectiveness	 of	 various	
Moodle	optimization	strategies.	Testing	was	conducted	using	JMeter.	The	test	cycle	
involved	 logging	 in,	 viewing	 the	 course	 outline,	 and	 logging	 out.	 A	 total	 of	 500	
dummy	accounts	were	created	to	simulate	simultaneous	logins	to	Moodle.	

The	 initial	 test	 focused	on	evaluating	Apache's	mpm_prefork,	mpm_worker,	
and	mpm_event	modules	 to	determine	which	performs	better.	The	mpm_prefork	
module	 uses	 multiple	 single-threaded	 processes	 to	 handle	 requests,	 ensuring	

https://doi.org/10.33022/ijcs.v14i3.4617


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i3.4617	 	 4398		 	

stability	 and	 compatibility	 with	 non-thread-safe	 libraries.	 The	 mpm_worker	
module	 combines	 multi-threading	 with	 multiple	 processes,	 offering	 improved	
scalability	 and	 efficiency.	 The	mpm_event	module	 extends	 the	worker	model	 by	
optimizing	 for	 keep-alive	 connections,	 making	 it	 more	 suitable	 for	 high-traffic	
environments.	 	 mpm_prefork	 and	mpm_worker	 exhibit	 identical	 performance	 in	
most	response	time	metrics,	with	mpm_prefork	having	a	slight	edge	due	to	a	lower	
error	rate.	mpm_event	offers	slightly	higher	throughput	but	at	the	cost	of	increased	
response	 times	 (especially	 at	 higher	 percentiles)	 and	 a	marginally	 higher	 failure	
rate.	 If	 reliability	 and	 consistent	 performance	 are	 the	 priorities,	mpm_prefork	 is	
the	 best	 option.	 However,	 if	 higher	 throughput	 is	 more	 critical,	 mpm_event	 is	
worth	considering	despite	its	trade-offs.	

	 The	 second	 test	 was	 designed	 to	 evaluate	 the	 performance	 of	 different	
system	configurations	by	comparing	the	impact	of	varying	RAM	sizes	on	response	
time,	throughput,	and	error	rates.	The	configurations	tested	were	all	based	on	a	4-
core	 CPU,	 with	 RAM	 sizes	 of	 4	 GB,	 8	 GB,	 and	 16	 GB.	 Each	 configuration	 was	
subjected	 to	 14,500	 samples,	 measuring	 key	 performance	 indicators	 such	 as	
average	 response	 time,	 minimum	 and	 maximum	 response	 times,	 as	 well	 as	
throughput	and	error	rates.	The	objective	was	to	determine	how	increasing	RAM	
affects	 system	 performance,	 particularly	 in	 terms	 of	 responsiveness	 and	
transaction	handling,	while	also	analyzing	error	occurrences.	The	data	reveals	that	
the	4	Core,	4	GB	RAM	configuration	exhibits	the	highest	average	response	time	of	
304.10	ms,	while	maintaining	zero	errors	and	a	throughput	of	27.97	transactions	
per	second.	Upgrading	to	8	GB	RAM	slightly	 improves	the	performance,	reducing	
the	 average	 response	 time	 to	 257.86	 ms,	 with	 minimal	 errors	 (0.01%)	 and	 a	
marginal	 increase	 in	 throughput	 to	 28.06	 transactions	 per	 second.	 Further	
increasing	the	RAM	to	16	GB	brings	the	average	response	time	down	to	250.18	ms,	
but	this	configuration	experiences	the	lowest	throughput	of	27.81	transactions	per	
second,	 with	 no	 errors.	 Overall,	 while	 the	 increase	 in	 RAM	 leads	 to	 reduced	
response	 times,	 the	 changes	 in	 throughput	 and	 error	 rates	 are	 minimal.	 In	
addition,	observations	through	Xen	Orchestra's	stats	monitoring	revealed	that	the	
server	did	not	fully	utilize	the	8	GB	and	16	GB	memory,	even	when	high	loads	were	
simulated	on	Moodle.	

	 Further	 optimization	 tests	 were	 conducted	 by	 adjusting	 key	 Apache	
configuration	values.	StartServers	(5)	determines	the	number	of	worker	processes	
started	 initially	 to	 handle	 requests,	 while	 MinSpareServers	 (5)	 and	
MaxSpareServers	(10)	control	the	minimum	and	maximum	number	of	idle	worker	
processes	 to	 efficiently	 manage	 traffic	 spikes	 without	 wasting	 resources.	
MaxRequestWorkers	(150)	limits	the	maximum	number	of	simultaneous	requests	
to	 prevent	 server	 overload,	 and	 MaxConnectionsPerChild	 (1000)	 ensures	 each	
worker	 handles	 up	 to	 1000	 requests	 before	 being	 replaced,	 preventing	 resource	
leaks	 and	maintaining	performance.	These	 adjustments	 aim	 to	 improve	 resource	
utilization	and	response	times	under	heavy	workloads.	

	 After	optimizations,	the	system	showed	improved	average	(down	by	6	ms)	
and	 median	 (down	 by	 42	 ms)	 response	 times,	 with	 no	 errors	 and	 stable	
throughput	 (27.79	 vs.	 27.81	 transactions	 per	 second).	 However,	 the	 maximum	
response	time	and	the	90th,	95th,	and	99th	percentiles	 increased,	 indicating	that	
while	most	requests	became	faster,	the	slowest	requests	took	significantly	longer	

https://doi.org/10.33022/ijcs.v14i3.4617


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i3.4617	 	 4399		 	

to	process.	The	optimizations	improved	typical	performance	but	led	to	occasional	
delays	 for	 certain	 requests,	 suggesting	 that	 while	 the	 system's	 overall	
responsiveness	 improved,	 some	high-latency	 transactions	now	experience	 longer	
processing	times.	Further	investigation	may	be	needed	to	address	these	increased	
latencies	in	the	higher	percentiles.	

	
D. Conclusion	

In	conclusion,	 this	research	highlights	 the	 importance	of	various	optimization	
techniques	 in	 enhancing	 the	 performance	 of	 Moodle-based	 systems.	 Through	 a	
comprehensive	 review	 of	 hardware,	 software,	 and	 front-end	 optimization	
strategies,	combined	with	experimental	testing,	the	study	emphasizes	the	potential	
improvements	in	user	experience	and	system	efficiency.	Key	findings	suggest	that	
hardware	 optimizations	 like	 solid-state	 drives,	 regular	 software	 updates,	 and	
efficient	 server	 configurations	 can	 significantly	 reduce	 response	 times	 and	
increase	 scalability.	 Furthermore,	 front-end	 optimizations,	 such	 as	 minimizing	
HTTP	 requests	 and	 optimizing	 images,	 also	 play	 a	 crucial	 role	 in	 boosting	 user	
engagement	 and	 system	 responsiveness.	 While	 the	 experimental	 results	 show	
improvements	in	response	times	and	throughput,	the	research	also	points	to	areas	
requiring	further	investigation,	such	as	minimizing	latencies	in	higher	percentiles.	
Overall,	implementing	these	optimization	strategies	can	substantially	improve	the	
performance	and	user	experience	of	Moodle	systems.	
	
	
E. References	
[1]	 S.	H.	P.	W.	Gamage,	 J.	R.	Ayres,	 and	M.	B.	Behrend,	 “A	 systematic	 review	on	

trends	 in	using	Moodle	 for	teaching	and	 learning,”	 Int.	 J.	STEM	Educ.,	vol.	9,	
no.	1,	p.	9,	Jan.	2022,	doi:	10.1186/s40594-021-00323-x.	

[2]	 Y.	 Zhang,	A.	Ghandour,	 and	V.	 Shestak,	 “Using	Learning	Analytics	 to	Predict	
Students	Performance	in	Moodle	LMS,”	Int.	J.	Emerg.	Technol.	Learn.	IJET,	vol.	
15,	p.	102,	Oct.	2020,	doi:	10.3991/ijet.v15i20.15915.	

[3]	 A.	 Sharif,	 “How	 to	 Benchmark	 Performance	 of	 Moodle,”	 Severalnines.	
Accessed:	 Nov.	 09,	 2024.	 [Online].	 Available:	
https://severalnines.com/blog/how-to-benchmark-performance-moodle/	

[4]	 P.	 Manchanda,	 “Analysis	 of	 Optimization	 Techniques	 to	 Improve	 User	
Response	Time	of	Web	Applications	and	Their	Implementation	for	MOODLE,”	
Dec.	 25,	 2013,	 arXiv:	 arXiv:1309.7173.	 Accessed:	 Nov.	 09,	 2024.	 [Online].	
Available:	http://arxiv.org/abs/1309.7173	

[5]	 “The	Adoption	and	Use	of	Moodle	in	Online	Learning:	A	Systematic	Review,”	
Inf.	Sci.	Lett.,	vol.	12,	no.	1,	pp.	341–351,	Jan.	2023,	doi:	10.18576/isl/120129.	

[6]	 S.	 H.	 P.	W.	 Gamage,	 J.	 R.	 Ayres,	M.	 B.	 Behrend,	 and	 E.	 J.	 Smith,	 “Optimising	
Moodle	quizzes	for	online	assessments,”	Int.	J.	STEM	Educ.,	vol.	6,	no.	1,	p.	27,	
Aug.	2019,	doi:	10.1186/s40594-019-0181-4.	

 
 

	
	

https://doi.org/10.33022/ijcs.v14i3.4617

